Try our new research platform with insights from 80,000+ expert users

Spring Cloud Data Flow vs StreamSets comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 19, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Spring Cloud Data Flow
Ranking in Data Integration
24th
Average Rating
7.8
Reviews Sentiment
6.8
Number of Reviews
9
Ranking in other categories
Streaming Analytics (9th)
StreamSets
Ranking in Data Integration
15th
Average Rating
8.4
Reviews Sentiment
7.0
Number of Reviews
21
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of April 2025, in the Data Integration category, the mindshare of Spring Cloud Data Flow is 1.1%, up from 0.9% compared to the previous year. The mindshare of StreamSets is 1.6%, up from 1.3% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Integration
 

Featured Reviews

NitinGoyal - PeerSpot reviewer
Has a plug-and-play model and provides good robustness and scalability
The solution's community support could be improved. I don't know why the Spring Cloud Data Flow community is not very strong. Community support is very limited whenever you face any problem or are stuck somewhere. I'm not sure whether it has improved in the last six months because this pipeline was set up almost two years ago. I struggled with that a lot. For example, there was limited support whenever I got an exception and sought help from Stack Overflow or different forums. Interacting with Kubernetes needs a few certificates. You need to define all the certificates within your application. With the help of those certificates, your Java application or Spring Cloud Data Flow can interact with Kubernetes. I faced a lot of hurdles while placing those certificates. Despite following the official documentation to define all the replicas, readiness, and liveliness probes within the Spring Cloud Data Flow application, it was not working. So, I had to troubleshoot while digging in and debugging the internals of Spring Cloud Data Flow at that time. It was just a configuration mismatch, and I was doing nothing weird. There was a small spelling difference between how Spring Cloud Data Flow was expecting it and how I passed it. I was just following the official documentation.
Karthik Rajamani - PeerSpot reviewer
Integrates with different enterprise systems and enables us to easily build data pipelines without knowing how to code
There are a few things that can be better. We create pipelines or jobs in StreamSets Control Hub. It is a great feature, but if there is a way to have a folder structure or organize the pipelines and jobs in Control Hub, it would be great. I submitted a ticket for this some time back. There are certain features that are only available at certain stages. For example, HTTP Client has some great features when it is used as a processor, but those features are not available in HTTP Client as a destination. There could be some improvements on the group side. Currently, if I want to know which users are a part of certain groups, it is not straightforward to see. You have to go to each and every user and check the groups he or she is a part of. They could improve it in that direction. Currently, we have to put in a manual effort. In case something goes wrong, we have to go to each and every user account to check whether he or she is a part of a certain group or not.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most valuable feature is real-time streaming."
"The ease of deployment on Kubernetes, the seamless integration for orchestration of various pipelines, and the visual dashboard that simplifies operations even for non-specialists such as quality analysts."
"The solution's most valuable feature is that it allows us to use different batch data sources, retrieve the data, and then do the data processing, after which we can convert and store it in the target."
"The product is very user-friendly."
"There are a lot of options in Spring Cloud. It's flexible in terms of how we can use it. It's a full infrastructure."
"The dashboards in Spring Cloud Dataflow are quite valuable."
"The best thing I like about Spring Cloud Data Flow is its plug-and-play model."
"The most valuable features of Spring Cloud Data Flow are the simple programming model, integration, dependency Injection, and ability to do any injection. Additionally, auto-configuration is another important feature because we don't have to configure the database and or set up the boilerplate in the database in every project. The composability is good, we can create small workloads and compose them in any way we like."
"The ETL capabilities are very useful for us. We extract and transform data from multiple data sources, into a single, consistent data store, and then we put it in our systems. We typically use it to connect our Apache Kafka with data lakes. That process is smooth and saves us a lot of time in our production systems."
"StreamSets Transformer is a good feature because it helps you when you are developing applications and when you don't want to write a lot of code. That is the best feature overall."
"The ability to have a good bifurcation rate and fewer mistakes is valuable."
"One of the things I like is the data pipelines. They have a very good design. Implementing pipelines is very straightforward. It doesn't require any technical skill."
"Also, the intuitive canvas for designing all the streams in the pipeline, along with the simplicity of the entire product are very big pluses for me. The software is very simple and straightforward. That is something that is needed right now."
"For me, the most valuable features in StreamSets have to be the Data Collector and Control Hub, but especially the Data Collector. That feature is very elegant and seamlessly works with numerous source systems."
"I really appreciate the numerous ready connectors available on both the source and target sides, the support for various media file formats, and the ease of configuring and managing pipelines centrally."
"StreamSets’ data drift resilience has reduced the time it takes us to fix data drift breakages. For example, in our previous Hadoop scenario, when we were creating the Sqoop-based processes to move data from source to destinations, we were getting the job done. That took approximately an hour to an hour and a half when we did it with Hadoop. However, with the StreamSets, since it works on a data collector-based mechanism, it completes the same process in 15 minutes of time. Therefore, it has saved us around 45 minutes per data pipeline or table that we migrate. Thus, it reduced the data transfer, including the drift part, by 45 minutes."
 

Cons

"On the tool's online discussion forums, you may get stuck with an issue, making it an area where improvements are required."
"Spring Cloud Data Flow could improve the user interface. We can drag and drop in the application for the configuration and settings, and deploy it right from the UI, without having to run a CI/CD pipeline. However, that does not work with Kubernetes, it only works when we are working with jars as the Spring Cloud Data Flow applications."
"The solution's community support could be improved."
"Spring Cloud Data Flow is not an easy-to-use tool, so improvements are required."
"I would improve the dashboard features as they are not very user-friendly."
"Some of the features, like the monitoring tools, are not very mature and are still evolving."
"The configurations could be better. Some configurations are a little bit time-consuming in terms of trying to understand using the Spring Cloud documentation."
"There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or refreshing the dashboard."
"Sometimes, it is not clear at first how to set up nodes. A site with an explanation of how each node works would be very helpful."
"There aren't enough hands-on labs, and debugging is also an issue because it takes a lot of time. Logs are not that clear when you are debugging, and you can only select a single source for a pipeline."
"StreamSet works great for batch processing but we are looking for something that is more real-time. We need latency in numbers below milliseconds."
"If you use JDBC Lookup, for example, it generally takes a long time to process data."
"In terms of the product, I don't think there is any room for improvement because it is very good. One small area of improvement that is very much needed is on the knowledge base side. Sometimes, it is not very clear how to set up a certain process or a certain node for a person who's using the platform for the first time."
"I would like to see it integrate with other kinds of platforms, other than Java. We're going to have a lot of applications using .NET and other languages or frameworks. StreamSets is very helpful for the old Java platform but it's hard to integrate with the other platforms and frameworks."
"StreamSets should provide a mechanism to be able to perform data quality assessment when the data is being moved from one source to the target."
"The monitoring visualization is not that user-friendly. It should include other features to visualize things, like how many records were streamed from a source to a destination on a particular date."
 

Pricing and Cost Advice

"The solution provides value for money, and we are currently using its community edition."
"This is an open-source product that can be used free of charge."
"If you want support from Spring Cloud Data Flow there is a fee. The Spring Framework is open-source and this is a free solution."
"We are running the community version right now, which can be used free of charge."
"The overall cost is very flexible so it is not a burden for our organization... However, the cost should be improved. For small and mid-size organizations it might be a challenge."
"The licensing is expensive, and there are other costs involved too. I know from using the software that you have to buy new features whenever there are new updates, which I don't really like. But initially, it was very good."
"The pricing is too fixed. It should be based on how much data you need to process. Some businesses are not so big that they process a lot of data."
"It's not so favorable for small companies."
"Its pricing is pretty much up to the mark. For smaller enterprises, it could be a big price to pay at the initial stage of operations, but the moment you have the Seed B or Seed C funding and you want to scale up your operations and aren't much worried about the funds, at that point in time, you would need a solution that could be scaled."
"StreamSets Data Collector is open source. One can utilize the StreamSets Data Collector, but the Control Hub is the main repository where all the jobs are present. Everything happens in Control Hub."
"There are different versions of the product. One is the corporate license version, and the other one is the open-source or free version. I have been using the corporate license version, but they have recently launched a new open-source version so that anybody can create an account and use it. The licensing cost varies from customer to customer. I don't have a lot of input on that. It is taken care of by PMO, and they seem fine with its pricing model. It is being used enterprise-wide. They seem to have got a good deal for StreamSets."
report
Use our free recommendation engine to learn which Data Integration solutions are best for your needs.
847,772 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
26%
Computer Software Company
17%
Retailer
7%
Manufacturing Company
6%
Financial Services Firm
14%
Computer Software Company
11%
Manufacturing Company
9%
Insurance Company
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What needs improvement with Spring Cloud Data Flow?
There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or r...
What is your primary use case for Spring Cloud Data Flow?
We had a project for content management, which involved multiple applications each handling content ingestion, transformation, enrichment, and storage for different customers independently. We want...
What advice do you have for others considering Spring Cloud Data Flow?
I would definitely recommend Spring Cloud Data Flow. It requires minimal additional effort or time to understand how it works, and even non-specialists can use it effectively with its friendly docu...
What do you like most about StreamSets?
The best thing about StreamSets is its plugins, which are very useful and work well with almost every data source. It's also easy to use, especially if you're comfortable with SQL. You can customiz...
What needs improvement with StreamSets?
We often faced problems, especially with SAP ERP. We struggled because many columns weren't integers or primary keys, which StreamSets couldn't handle. We had to restructure our data tables, which ...
What is your primary use case for StreamSets?
StreamSets is used for data transformation rather than ETL processes. It focuses on transforming data directly from sources without handling the extraction part of the process. The transformed data...
 

Overview

 

Sample Customers

Information Not Available
Availity, BT Group, Humana, Deluxe, GSK, RingCentral, IBM, Shell, SamTrans, State of Ohio, TalentFulfilled, TechBridge
Find out what your peers are saying about Spring Cloud Data Flow vs. StreamSets and other solutions. Updated: April 2025.
847,772 professionals have used our research since 2012.