Try our new research platform with insights from 80,000+ expert users
Karlo Zatylny - PeerSpot reviewer
Chief Technology Officer at Portnox
Real User
Top 10
Satisfies our needs for global availability, flexibility, and scalability
Pros and Cons
  • "We chose Azure Cosmos DB initially because of the type of data that we needed to store. We have a schema that is very nondeterministic and flexible. It is always changing based on whatever data we need to acquire from different devices, so we needed a document store with a flexible schema."
  • "The one thing that I have been working on with Microsoft with regard to this is the ability to easily split partitions and have it do high-performance cross-partition queries. That is the only place where either our data size or our throughput has grown beyond one partition, so being able to do cross-partition queries efficiently would be my number one request."

What is our primary use case?

We use it as our main database for our network access control software, and we use it to store all of the information we need to authenticate different devices and users to the networks of our customers. It maintains all of the necessary data for our SaaS product.

How has it helped my organization?

It is pretty easy to maintain and to optimize. The main thing that we have to deal with is the RUs. Probably the number one topic of Azure Cosmos DB in the world is how to make sure you have the right RUs set in place for each of your different collections, but the tools that are available in the Azure portal make it very easy for us to check how the performance is going. We can check if we need to adjust anything within the system to ensure that we have the right scale and the right split of our different indexes so that we are getting the most throughput for the data we need. In general, it is very easy for us to maintain. We just need to use the Azure tools to let us know when we need to pay attention to the different throughput variables that are important in the general maintenance of the product.

We use Azure AI Search for all of our search needs. The integration that Azure AI Search has with Azure Cosmos DB is very good. We heavily utilize the integration with Azure AI Search for a lot of the features on our website. The search works very well. I do not know if we have what one would consider large amounts of data because each one of our customers is searching through just their own set of data. On average, each customer has data in the range of only gigabytes, so the search does very well, but I do not know if you would consider what we have as very large amounts of datasets. We are dealing in the few gigabytes range rather than anything huge like terabytes.

The benefits of its global availability and the response time were noticed right away because we immediately had customers who were globally distributed, so the latency was noticed right away. We got a good performance that way. We did not notice any of the other benefits until we got a lot more customers and had a lot bigger scale. As our scale has increased dramatically over the past couple of years, we have noticed that we have not had to do much with Azure Cosmos DB. It just takes all of our additional data and additional queries and all of the additional throughput that we are throwing at it. It does not need very much in terms of maintenance and performance tuning because it handles everything we need pretty much out of the box, so it is a low-maintenance solution for us where we just check on things every once in a while as a best practice. In terms of scalability, we have doubled, tripled, and quadrupled our customer size or number of customers, and we have not had to do very much with it architecturally just because it has been able to handle that scale.

For onboarding, the documentation is very good. As soon as I joined the company, I read a lot of the Azure Cosmos DB documentation so that I understood it. It is well documented, and there are support forums and Microsoft experts. We have a Microsoft Solution Architect dedicated to us, and we have been able to ask him questions. The community surrounding it and Microsoft's ability to answer all of our questions, my questions specifically, have been really good. The documentation is great. I have been able to find all of my answers during my tenure. Everything is generally answered in the documentation, and for what is not, Microsoft has been very quickly able to get to us through our Solution Architect.

Within the first week, I was already executing queries against the database and monitoring its performance. Within a week, I had a basic understanding of how to interact with the database and understand different performance metrics and structures within the database. It is pretty easy to learn if you are familiar with other databases. Because I was familiar with other document stores and SQL-based databases, there was not a lot to understand. There are some differences in the SQL language that you are allowed to use with Azure Cosmos DB, so there was a little bit of a learning curve there, but the documentation was really specific. It is not a sharp learning curve if you are familiar with any other database systems. If you are familiar with SQL Server, MongoDB, MySQL, or Postgres, a lot of the concepts are exactly the same.

What is most valuable?

We chose Azure Cosmos DB initially because of the type of data that we needed to store. We have a schema that is very nondeterministic and flexible. It is always changing based on whatever data we need to acquire from different devices, so we needed a document store with a flexible schema. 

In addition to that, our customers are globally located, so we needed a database store that could be globally accessed and had minimal latency, good throughput performance, good query performance, as well as scalability. All of the things that you look for in a good piece of software about performance, scalability, high availability, and disaster recovery are available in Azure Cosmos DB. Because of that and because it is a flexible document storage, we went with Azure Cosmos DB.

What needs improvement?

The one thing that I have been working on with Microsoft about this is the ability to easily split partitions and have it do high-performance cross-partition queries. That is the only place where either our data size or our throughput has grown beyond one partition, so being able to do cross-partition queries efficiently would be my number one request.

The request unit architecture that they have in place is understandable but could be better. What you get out of some solutions like SQL Server or MySQL is a lot more understandable. The request unit architecture of Azure Cosmos DB is not as easy as pure SQL solutions. They could do better in making the RUs more understandable and more flexible because changing your partition keys and your indexes is a larger batch of work than it necessarily needs to be.

Buyer's Guide
Microsoft Azure Cosmos DB
March 2025
Learn what your peers think about Microsoft Azure Cosmos DB. Get advice and tips from experienced pros sharing their opinions. Updated: March 2025.
842,767 professionals have used our research since 2012.

For how long have I used the solution?

The company I have been working for has been using it for more than five years, but I have been with the company for just over two years. I have been working with Azure Cosmos DB during my entire two-plus years at the company.

What do I think about the stability of the solution?

We have had only one incident where Azure Cosmos DB went down. It was about two years ago in the East US. They had an incident where the update they made caused some downtime for us. I forgot what the duration was, but luckily, we had global replication for our main Azure Cosmos DB setup, so while the East US was down, the West EU region picked up. The majority of our operations continued without issue because of our use of the global replication option available within Azure Cosmos DB.

Latency and availability are great. You can, of course, write code that does bad things for it, and we have had to fix our own code sometimes. Whenever we have written our code properly, latency and availability have been great.

What do I think about the scalability of the solution?

The scale has been wonderful. Our ability to add request units as we have needed them has been easy. We do not have to do much other than tell the system we want more, and then it automatically scales for us, so we do well there. 

The only limitation is around the partitions. Each physical partition maxes out at 10,000 request units as they have documented. We have had to deal with that while designing our data structures to make sure that we take into account that physical partition limitation.

How are customer service and support?

The quality is top-notch. We have been able to talk directly to some of the Azure Cosmos DB experts at Microsoft. We have been able to get extremely detailed answers with very specific recommendations for all of our different questions.

Their speed has been definitely acceptable. Within a day or two, I get at least an acknowledgment of my question. We have not had any high-severity questions to be answered right away. Most of our questions are during the design phase where we just need to know specific recommendations based on our needs, so there has been no real-time pressure. Answering or acknowledging our question within a day or two has been an acceptable time frame. We generally get our answers within a week, which has also been acceptable for us. We have never needed a super fast answer, but I am also clear about that in my communication with them. I tell them that it is not an emergency, and we are just in the design phase and need these questions answered.

I would rate their support a ten out of ten. There is nothing that I would ask for more from the support. They are responsive. They give accurate answers, and they are easy to deal with. That is all that you want from a support experience.

How would you rate customer service and support?

Positive

Which solution did I use previously and why did I switch?

Historically, in my career, I have used SQL Server, ClickHouse, Postgres, and MySQL. ClickHouse is probably the closest equivalent, but we had to maintain everything in-house, so it was a lot more intensive to maintain. SQL Server was nice, but it does not have the document flexibility, or it did not have that at the point in time we were thinking of using Azure Cosmos DB. So, I am very familiar with all the SQL-based servers historically. They just did not have the necessary document flexibility that we were looking for when we selected Azure Cosmos DB.

How was the initial setup?

It was already in place when I joined.

It does require some maintenance as we grow. Each one of the collections scales up by request units. We use the autoscale feature, but it has a bounded range, so as we grow, we watch the RU maximum, and we adjust the RU maximum of our different containers as we scale up. The maintenance is minimal. We change the RU scale maybe once per quarter. Otherwise, everything goes fairly without maintenance.

What was our ROI?

I do not know if it has helped us decrease the total cost of ownership, but certainly, it has helped in our DevOps maintenance. Our DevOps people spend a lot less time worrying about or dealing with Azure Cosmos DB. Because of that, we do not spend a lot of person-hours on Azure Cosmos DB. However, Azure Cosmos DB does come at a premium price in terms of being able to do all of its features. It has an appropriately associated cost with it. Because of that, we have not done any formal calculations to see if it saves us more than some of the other solutions such as SQL Server or Postgres. We have not done a cost comparison. What we do know is that it satisfies all of our needs. We do not spend a lot of time thinking about it. As we add features and datasets to it, we do not have to do a lot of performance testing, so we are just able to add things to it. It just works, and we do not have to spend a lot of development time, QA time, or DevOps time worrying about whether it is going to be able to satisfy what we need it to do.

As opposed to running our own VMs or our own databases, it would have reduced our overhead costs. All we have to do is go into the Azure portal, click a couple of buttons, and type a couple of numbers, and then it just happens without any other effort. It takes us seconds to minutes to change things, whereas other solutions might take days or hours to process. From that perspective, there is certainly a reduction because it only takes us a few seconds to scale our Azure Cosmos DB without any other effort. However, you pay for that with the actual price of Azure Cosmos DB itself. That is somewhat built into the price where Microsoft takes on that maintenance cost, but you pay for it.

What's my experience with pricing, setup cost, and licensing?

The pricing and licensing model was initially difficult to understand, but as soon as I learned what was going on and how it was priced, it was pretty easy. What is more difficult is to understand how your system is going to behave specifically with the specific partitioning and querying that you are doing. Some of it is reactive because you cannot always predict what your customers are going to use in your product and in what specific way. So, while we have understood the pricing model, what we have not understood is which parts of our system would end up being the most expensive, costing us the most, or needing to scale the most. It is not necessarily an issue with Azure Cosmos DB itself. It is about understanding your individual software or our individual software when it is running on top of Azure Cosmos DB. It is about understanding what the behavior is going to be.

What other advice do I have?

I would advise taking advantage of all of the features that are available. Especially if you are a globally distributed business, make sure that you have all of the high availability and backup options enabled so that you are not surprised in case of a problem.

Like almost all of the recommendations that you see in different Microsoft videos, make sure that your partition keys are set up properly from a RU perspective so that you know that you will be able to scale your individual containers effectively without running into the limitation of 20-gigabyte physical partition size or 10,000 RU physical partition throughput. Be aware that those exist and design your partition keys for the future so that you will not be limited when your system starts to get heavily utilized in the future.

I would rate Azure Cosmos DB an eight out of ten. There are some improvements that I would like to see around the physical partitions.

Disclosure: PeerSpot contacted the reviewer to collect the review and to validate authenticity. The reviewer was referred by the vendor, but the review is not subject to editing or approval by the vendor. The reviewer's company has a business relationship with this vendor other than being a customer: Partner
Flag as inappropriate
PeerSpot user
Hashir Ali Shuja - PeerSpot reviewer
Associate Software Architect at a tech vendor with 51-200 employees
Real User
Top 20
Offers efficient data management with room for simplified migration
Pros and Cons
  • "Microsoft Azure Cosmos DB simplifies the process of saving and retrieving data."
  • "Microsoft Azure Cosmos DB simplifies the process of saving and retrieving data."
  • "There should be a simpler way for data migration."

What is our primary use case?

I was using Microsoft Azure Cosmos DB to store unstructured data.

How has it helped my organization?

It is easy to learn how to use Azure Cosmos DB.

Azure Cosmos DB enhances search result quality by enabling rapid data retrieval within its collections. It can handle large amounts of data efficiently.

Azure Cosmos DB offers numerous advantages, including flexibility, cost-effectiveness relative to performance, and a pre-existing infrastructure on Azure. Its support for multiple data models, extensive document database capabilities, and fully managed maintenance provided by Azure make it a compelling choice with immediately apparent benefits.

What is most valuable?

Microsoft Azure Cosmos DB simplifies the process of saving and retrieving data. The only requirement is to create the collection and streamline data management.

What needs improvement?

There should be a simpler way for data migration. Currently, we need to write scripts to update data in bulk and ensure proper connectivity for migration with .NET, which seems hectic and risky.

For how long have I used the solution?

I have used Cosmos DB in my previous project for around one year.

What do I think about the stability of the solution?

Azure Cosmos DB offers high availability, at approximately 99.9 percent, with good latency.

What do I think about the scalability of the solution?

Azure Cosmos DB handles scalability well. It is easy to scale up the workloads.

Dynamic scaling enhances cost-efficiency and usability by automatically adjusting resources to meet demand. This means the system scales up capacity when needed and scales down when not in use, preventing unnecessary expenses.

Which solution did I use previously and why did I switch?

I have used MongoDB, but not extensively. If working with Node, I would recommend Mongo, but in a Microsoft environment, I recommend Cosmos.

How was the initial setup?

The initial deployment was manageable. It took around five to seven hours to deploy Cosmos to a working condition fully.

What about the implementation team?

At that time, we had a team of four people managing the infrastructure and deployments.

What other advice do I have?

I would rate Microsoft Azure Cosmos DB a seven out of ten.

New users should be familiar with DocumentDB since most people are only aware of relational databases, but Cosmos is different.

Which deployment model are you using for this solution?

Public Cloud

If public cloud, private cloud, or hybrid cloud, which cloud provider do you use?

Microsoft Azure
Disclosure: I am a real user, and this review is based on my own experience and opinions.
Flag as inappropriate
PeerSpot user
Buyer's Guide
Microsoft Azure Cosmos DB
March 2025
Learn what your peers think about Microsoft Azure Cosmos DB. Get advice and tips from experienced pros sharing their opinions. Updated: March 2025.
842,767 professionals have used our research since 2012.
Gabriel Mendonça - PeerSpot reviewer
Java Software Developer at a tech vendor with 10,001+ employees
Real User
Top 10
Excellent availability, latency, and capability to handle large data insertions
Pros and Cons
  • "The availability and latency of Azure Cosmos DB are excellent."
  • "Azure Cosmos DB helped improve the quality of our search results."
  • "The size of the continuation token in Azure Cosmos DB should be static rather than increasing with more data, as it can lead to application crashes. They should use a static key size."
  • "The size of the continuation token in Azure Cosmos DB should be static rather than increasing with more data, as it can lead to application crashes."

What is our primary use case?

I develop applications. I developed an application where I had to search the Azure Cosmos DB database for values related to suspicious entities. It involved retrieving, sorting, and manually searching data through queries.

How has it helped my organization?

Azure Cosmos DB helped improve the quality of our search results. We could see its benefits immediately after the deployment.

What is most valuable?

The availability and latency of Azure Cosmos DB are excellent. It handles large data insertions efficiently without any problems related to scalability. It scales workloads very well.

What needs improvement?

The library of Azure Cosmos DB is like JPA, but it is not exactly JPA. We could not integrate that.

The size of the continuation token in Azure Cosmos DB should be static rather than increasing with more data, as it can lead to application crashes. They should use a static key size.

If we want to update some data, we cannot use the SQL command line. It is not like SQL Server or any other relational database. We have to send the JSON file or send the text to the Azure portal.  These are the only two options. We cannot use the normal SQL statement.

For how long have I used the solution?

I have been using it since December 2021.

What do I think about the scalability of the solution?

The scalability is very good. We performed performance tests, inserting objects with more than 10,000 records without any issues, although, on the application side, we started to see high memory consumption. That is because, with larger JSON files, you will have more objects in the Java application. These things consume memory, but there are no issues regarding scalability.

How are customer service and support?

I have not contacted their support.

How would you rate customer service and support?

Neutral

Which solution did I use previously and why did I switch?

I have experience with MongoDB but only for personal studies. I only learned the basic things.

How was the initial setup?

It was easy because we have Terraform embedded in the Jenkins pipeline. Once I deploy the application, it connects with Azure Cosmos DB. It is already configured, so I do not have to worry about this part.

It took us about one month to get onboarded and understand the basic functionalities. 

It does not require any maintenance at our end.

What about the implementation team?

We usually have a team of three to four people.

What's my experience with pricing, setup cost, and licensing?

I am not aware of the price, but a challenge that I have faced occasionally is that running longer queries requires more RUs, so I have to ask someone with permissions to execute the queries.

What other advice do I have?

I would advise learning more about queries and select statements. You can use that on the Java side and Cosmos SDK.

It is easier to learn if you already know relational databases. You can use some of that knowledge to work with Azure Cosmos DB. Also, if you know JPA, it would not be so difficult to work with the Cosmos SDK for Java application development. Inserting data is also simple.

It is at a medium level in terms of ease of use. There is documentation for gathering the information. Azure Cosmos DB does not have any constraints for the column names. If you want to create a specific query, you can find information related to that in Microsoft documentation. You can find queries to solve specific problems.

I would rate Azure Cosmos DB an eight out of ten.

Which deployment model are you using for this solution?

Public Cloud

If public cloud, private cloud, or hybrid cloud, which cloud provider do you use?

Microsoft Azure
Disclosure: I am a real user, and this review is based on my own experience and opinions.
Flag as inappropriate
PeerSpot user
Cornell Emile - PeerSpot reviewer
Founder and CEO at Amped Data Solutions
Real User
Top 20
Its ability to search through large amounts of data is excellent
Pros and Cons
  • "Specifically, we are using the MongoDB API, so we leverage it in that way. I like the flexibility that it offers. My team does not have to spend time building out database tables. We can get going fairly quickly with being able to read and write data into a MongoDB collection that is hosted inside Azure Cosmos DB."
  • "It is easy to use, but optimization has been a mixed experience. It has been more of trying to figure out how to do so. We have not found much support there, so we have to come up with our own way of optimizing it in different ways. That is one area of improvement."

What is our primary use case?

We use it as a data storage platform for several proprietary applications that we have designed and built and now support. We generally use it to be able to scale so that our customers can search a sizable amount of data. We have millions of records that include an extensive amount of text.

How has it helped my organization?

We implemented Azure Cosmos DB for our tokenization process. We had originally built a data dictionary to be able to tokenize different words within our MongoDB collection, but over a period of three years or so, we found that there were some limitations to doing that. The data dictionary needed to be updated, so we turned to the vector search feature because it essentially allows us to measure the similarity between words. Those sorts of comparisons could be done very easily. There is the ability to tokenize words, which we then use in the search functionality provided for the users of our applications. It has helped us improve the search functionality of our applications.

I landed on it as an architectural component of one of our first solutions. I went in expecting its benefits. It delivered the benefits of being able to quickly scale and being able to support semi-structured, unstructured, and structured data sets or data properties. All of these aspects are supported. We were able to realize its benefits early on.

We have used the vector database with Azure AI services. It works fine. They are embedded vectors. We are running some text through Azure AI. It then returns these embedded vectors, and we store those. We are able to use those vector values or vectors to determine the similarity between various words that are being searched in our applications.

The Azure Cosmos DB's ability to search through large amounts of data is excellent. It is fantastic. We have benefited from it. It is great.

What is most valuable?

There are a number of different APIs or data storage supported in Azure Cosmos DB. Specifically, we are using the MongoDB API, so we leverage it in that way. I like the flexibility that it offers. My team does not have to spend time building out database tables. We can get going fairly quickly with being able to read and write data into a MongoDB collection that is hosted inside Azure Cosmos DB.

I found it very easy to use. We have been using it for five years, so it is quite flexible for us. The ease of use is quite high for us.

What needs improvement?

It is easy to use, but optimization has been a mixed experience. It has been more of trying to figure out how to do so. We have not found much support there, so we have to come up with our own way of optimizing it in different ways. That is one area of improvement. We would like to have more tools that support the optimization of Azure Cosmos DB. There are not many tools out there. We have had to develop our own tools internally, such as a clean plan or query plan, and look at the index usage, throughput, and those sorts of things. The portal experience for optimizing and monitoring the service needs a few enhancements.

I am looking at it through the lens of MongoDB API. There are four or five other APIs that are supported in Azure Cosmos DB. The MongoDB API experience could be improved substantially by having a more user-friendly set of administrative tools so that I can go out there and query the documents that are part of the collection. Currently, I am working around that by using third-party tools like 3T. I also use MongoDB's Compass client tool. They can make this part of managing the database or the collection a lot easier by providing some built-in toolsets, similar to what is offered by Azure with Azure Data Studio. That is a big area for improvement. 

We should also be able to better manage the cost. There have been some improvements there, but there is still room for improvement in terms of how costs are managed through the Azure portal relative to Azure Cosmos DB. To me, it is one of the more expensive services out there depending on how it is being leveraged.

One of the key limitations is that only so many vectors can be supported. It does not work very well with the large amount of text that has to be embedded in the vectors. That is one limitation we have run into with the feature set.

For how long have I used the solution?

It has been five years. 

What do I think about the stability of the solution?

The SLA is pretty good. We have been able to at least get past 99.9%. We are probably closer to 99.99%. So, overall, it has done well over the five years. Just like with most things, there were a few instances where it crashed or was not available. Those instances are memorable, but they are few and very far apart.

Its latency is good. The availability is also good.

What do I think about the scalability of the solution?

Its scalability is good. However, redundancy does not work very well. Redundancy is having a set of backups. It is also a part of high availability. We have used some of the redundancy features in Azure Cosmos DB, and it created problems for us consistently. We recently had to move away from having a redundant copy of the data and just having a single copy. Of course, we have adequate backups.

Through the lens of MongoDB API, the scalability can be better. However, the limitations are core to the actual platform. MongoDB is not designed to scale horizontally, so that is how Azure offers it. It scales vertically which means that I can go and request more compute and more memory RUs for the instance that I am using. If I was supporting multiple workloads that had different read/ write patterns, it would work, but it is not designed to do that well at its core, as I understand it. It is less of a function of Azure Cosmos DB and more of a function of MongoDB itself.

The dynamic scaling has helped decrease our organization’s overhead costs. We are able to scale up during business hours, or when there is demand, we scale automatically. There are some tools that we have built and some processes that do that. We can also scale down during non-business hours or when the demand drops for the database or the data store. It has helped to manage scaling costs.

How are customer service and support?

I contacted their support this year when we had some issues. When it comes to customer service, it always comes down to the person you get on the phone or who picks up your ticket. 

Regarding Azure Cosmos DB, we felt frustrated when we needed that support from Microsoft. It has not been there because the things that we are dealing with are generally more complex than most customers would have to deal with. At times, the representatives or engineers we got or who picked up the tickets we submitted did not have the breadth of experience needed to support us or resolve the issues. So, we resolve the issues ourselves the best we can.

How would you rate customer service and support?

Negative

Which solution did I use previously and why did I switch?

We use some of the alternatives because it does not solve everything. There is no such thing as one perfect data store. We use Azure SQL instances. We use SQL and VM in Azure. We have started doing a lot more Postgres, which is the flavor of the time. Everybody seems to be moving to Postgres all of a sudden.

Synapse is another tool. It is another Azure service that we use. It just depends on what type of data we are using and what makes sense in terms of the implementation of the application. Those are some of the alternatives that we have used.

How was the initial setup?

Its deployment is easy. Setting up the service is easy. You make a decision around where you want to deploy and those sorts of things. There is a lot of pointing and clicking. That was very easy.

Taking it to production was a lot harder. It was a lift to get the data loaded into Azure Cosmos DB. At the time, there were about 750,000 resumes that we uploaded for a customer, so it took a lot of time. We had to build a custom app to load those documents on data records into Azure Cosmos DB. We had two people working on it for two weeks. We probably spent somewhere around 60 hours around the lift to get that all loaded up and going in Azure Cosmos DB.

It took us about 18 months to feel fully confident in working with this and reach a level where we can go and teach others. We feel that we have got a firm grasp of the service after about 18 months of production support.

Its maintenance has been taken care of by Microsoft. However, at the end of last year going into this year, there were a few disruptions with the service that hampered our customers or users. There have been times when the service went down, or the service was upgraded but the SDK or NuGet packages used to support or connect to Azure Cosmos DB were not in sync. Overall, Microsoft takes care of the maintenance.

What about the implementation team?

It was all done in-house. We had two people involved in it, myself and my lead developer. It was mainly about loading data into Azure Cosmos DB. That was a big lift.

What was our ROI?

Azure Cosmos DB helped decrease our organization’s total cost of ownership. It is hard to provide the numbers, but managing the data store is easier for us with Azure Cosmos DB with the MongoDB API because there is no need for a DBA. We do not have a DBA on the team who is just taking care of the indexes and making sure that the database is healthy. It pretty much just runs. If we had a DBA in the team specifically for MongoDB, we would be paying about 150,000 dollars a year. We have to somewhere in the neighborhood of 50,000 dollars for the service in Azure. In terms of the total cost of ownership, it saves us about 100,000 dollars.

What's my experience with pricing, setup cost, and licensing?

Pricing, at times, is not super clear because they use the request unit (RU) model. To manage not just Azure Cosmos DB but what you are receiving for the dollars paid is not easy. It is very abstract. They could do a better job of connecting Azure Cosmos DB with the value or some variation of that. 

What other advice do I have?

Overall, I would rate Azure Cosmos DB an eight out of ten.

Disclosure: PeerSpot contacted the reviewer to collect the review and to validate authenticity. The reviewer was referred by the vendor, but the review is not subject to editing or approval by the vendor. The reviewer's company has a business relationship with this vendor other than being a customer: Partner
Flag as inappropriate
PeerSpot user
reviewer2596239 - PeerSpot reviewer
Hands on user at a manufacturing company with 10,001+ employees
Real User
Top 20
Switching to the cloud significantly improved scalability, flexibility, and uptime
Pros and Cons
  • "The connectors, such as the MongoDB connector and the integration with SQL, are incredibly valuable."
  • "Switching to the cloud significantly improved scalability, flexibility, and uptime."
  • "There's a little bit of a learning curve because I was new to Azure. But once you learn the tool, it's pretty straightforward."

What is our primary use case?

Our primary use case for Cosmos DB is unstructured data. We utilize it to spin up databases quickly.

How has it helped my organization?

We previously used on-premises databases. Switching to the cloud significantly improved scalability, flexibility, and uptime. It also addressed our uptime issues and greatly benefited our organization. We've never had issues searching through any amount of data; it's more than capable of searching large amounts of data. 

What is most valuable?

The connectors, such as the MongoDB connector and the integration with SQL, are incredibly valuable.

What needs improvement?

There's a little bit of a learning curve because I was new to Azure. But once you learn the tool, it's pretty straightforward.

For how long have I used the solution?

I have been using the solution for about three years now.

What do I think about the stability of the solution?

We haven't noticed any significant issues with latency, but we don't have many applications. The availability is excellent, and we have multiple availability zones, so nothing goes down. 

What do I think about the scalability of the solution?

The solution can scale very well both up and down, although we predominantly work with smaller databases. We haven't needed extensive scalability yet, but it seems very capable.

Which solution did I use previously and why did I switch?

We previously used MongoDB. The shift to Cosmos made sense as we wanted to move to the cloud and benefit from its MongoDB API connection.

How was the initial setup?

The setup was straightforward. Team members could start using the tool within a few hours, although not at an expert level.

What was our ROI?

As far as I know, it's cheaper compared to running on-prem, although comparing costs exactly can be challenging.

What's my experience with pricing, setup cost, and licensing?

I personally don't deal much with budgets, but our financial analyst hasn't raised any complaints. The pricing aligns well with budget expectations.

What other advice do I have?

I would rate the product an eight or nine out of ten. We are very happy with it as it runs smoothly right out of the box.

Which deployment model are you using for this solution?

Public Cloud
Disclosure: I am a real user, and this review is based on my own experience and opinions.
Flag as inappropriate
PeerSpot user
Maria Pallante - PeerSpot reviewer
EVP, Technology Solutions at Bond Brand Loyalty
Real User
Top 20
Provides excellent search result quality but it requires full DR replication
Pros and Cons
  • "The most valuable aspect of Cosmos DB is its performance."
  • "We'd like to avoid full DR replication if possible, as this would result in significant cost savings."

What is our primary use case?

We use Microsoft Azure Cosmos DB in our loyalty platform, which is based on our proprietary technology, Synapse LX. In loyalty, we need to enroll, score, and deliver rewards communications in near real-time. There are significant volume spikes in those activities, so our use case is to support the writing of information into our database. Cosmos DB is a no-SQL database that allows us to scale quickly and handle large volume spikes. It allows us to auto or manually scale in many different ways. It gives us much flexibility to handle that requirement and ensure we deliver the right customer experiences.

How has it helped my organization?

Cosmos DB is not difficult to use, but like anything, it requires careful planning and consideration of use cases. This is especially important when planning to implement it. From an optimization perspective, Microsoft has made significant efforts in the past 12 to 18 months to facilitate changes after initial implementation and optimize cost.

Cosmos DB provides excellent search result quality. Since implementing it, we have not encountered any issues with our searches.

After deploying Cosmos DB, we initially experienced some performance gains, followed by additional benefits that required a learning curve regarding tuning and configuration. As our understanding deepened, we were able to optimize it further.

In the last three months, Cosmos DB has helped reduce our total cost of ownership. Microsoft recently implemented a feature that allows us to achieve savings of up to 50 percent.

What is most valuable?

The most valuable aspect of Cosmos DB is its performance. It serves as the foundation for OpenAI's infrastructure, providing us with similar functionality. This not only prepares us for AI use cases but also efficiently supports our loyalty use cases. We can share information with our customers and deliver experiences without concern about performance.

What needs improvement?

For our Disaster Recovery plan, we currently use geo-replication. We'd like to avoid full DR replication if possible, as this would result in significant cost savings.

For how long have I used the solution?

I have been using Microsoft Azure Cosmos DB for five years.

What do I think about the stability of the solution?

We have not had any stability issues with Cosmos DB.

What do I think about the scalability of the solution?

Cosmos DB's scalability is excellent, which is the whole reason to use it for scalability and performance.

The dynamic scaling helps decrease our overhead costs.

How was the initial setup?

The initial deployment was straightforward and consisted of two to three people.

What's my experience with pricing, setup cost, and licensing?

Cosmos DB's pricing structure has significantly improved in recent months, both in terms of its pricing model and how charges are calculated. This has led to substantial cost savings for both us and our customers.

What other advice do I have?

I rate Microsoft Azure Cosmos DB seven out of ten because of the disaster recovery requirements.

Cosmos DB presents a steep learning curve. I would rate it a five out of ten. The challenge lies not so much in understanding its concepts as in utilizing them effectively and efficiently.

It took us 12 to 18 months of focused attention to fully onboard our team. At that point, we began to understand. However, it wasn't until we went live and observed actual user activity that we truly grasped the whole picture. Testing is one thing, but experiencing real-world interactions provides invaluable insights and a deeper understanding.

Cosmos DB requires minimal maintenance, but monitoring its performance and optimizing it as needed is crucial.

Potential users should plan accordingly, as Cosmos DB is a NoSQL database that uses similar design principles. Consider the design and apply those principles beforehand to optimize performance from the start. Understanding your read-and-write ratio is crucial due to cost implications, so ensure you understand the balance between reading and writing to the database. All these factors matter as they can impact your costs, so consider them carefully. 

Which deployment model are you using for this solution?

Public Cloud

If public cloud, private cloud, or hybrid cloud, which cloud provider do you use?

Microsoft Azure
Disclosure: My company has a business relationship with this vendor other than being a customer: Partner
Flag as inappropriate
PeerSpot user
reviewer2595849 - PeerSpot reviewer
Partner Solution Architect (Microsoft Power Platform) at a tech vendor with 1,001-5,000 employees
Real User
Top 20
Seamless record creation with JSON for efficient data handling
Pros and Cons
  • "I like the way you can create and delete records. You pass a JSON, and then it creates a record."
  • "It is easy to use because you don't need to know much about Cosmos DB or have prior experience."
  • "Once you create a database, it calls the container, and then items show up. A better description and more guidance would help because the first time I created it, I didn't understand that a container is similar to a table in SQL."
  • "A better description and more guidance would help because the first time I created it, I didn't understand that a container is similar to a table in SQL."

What is our primary use case?

I am building an extension app for DocuSign. One of the ways for me to demonstrate this is by using a third-party database. I read and write data from Cosmos DB using DocuSign tools.

How has it helped my organization?

We wanted to use Azure function apps and Cosmos DB because Cosmos is serverless and non-relational, so it's easy to set up and simple to scale up and down. Overall, it was a good fit. 

What is most valuable?

I like the way you can create and delete records. You pass a JSON, and then it creates a record. It is easy to use because you don't need to know much about Cosmos DB or have prior experience. 

Cosmos DB does a pretty good job of searching. I've never had trouble as long as I search for a unique key or value I'm looking for. If my query is right, it returns the value.

What needs improvement?

Once you create a database, it calls the container, and then items show up. A better description and more guidance would help because the first time I created it, I didn't understand that a container is similar to a table in SQL. 

For how long have I used the solution?

I have been using it for six months.

What do I think about the scalability of the solution?

My use case is like a proof of concept, so the data set is not extremely large, but I know from reading about it that it can scale up well. It should do a good job on large amounts of data. 

How was the initial setup?

The initial setup was simple the first time I used Cosmos DB. It took just a few hours for my small technical team to get used to how Cosmos DB works.

What's my experience with pricing, setup cost, and licensing?

The pricing model has aligned with our expectations. In Azure, setting it as consumption-based or serverless keeps the cost low, but we had instances where automation increased the cost significantly. It was more of a configuration problem, where options to keep it minimal are still present.

Which other solutions did I evaluate?

We wanted to go with Azure function apps and Cosmos DB to keep it serverless and non-relational, making it easy to set up, scale up, and down.

What other advice do I have?

I rate the product as eight out of ten.

Which deployment model are you using for this solution?

Public Cloud

If public cloud, private cloud, or hybrid cloud, which cloud provider do you use?

Microsoft Azure
Disclosure: I am a real user, and this review is based on my own experience and opinions.
Flag as inappropriate
PeerSpot user
Brandon Smith - PeerSpot reviewer
Senior Software Developer at United Airlines
Real User
Removes bottlenecks related to databases in our application and works quickly because of reference keys
Pros and Cons
  • "The biggest benefit it offers is scalability. It's easier to work with concurrency and updating data."
  • "An improvement would be a more robust functionality around updating elements on a document, or some type of procedural updates that don't require pulling the entire document."

What is our primary use case?

We use Cosmos DB as our entire storage database solution for our application. We don't use any other relational database. We have a file that we use for configuration, but we use Cosmos for user data.

We have about 100,000 users a week who visit our website. We have plans to increase usage to four times what we're using now.

How has it helped my organization?

The biggest benefit it offers is scalability. It's easier to work with concurrency and updating data. We don't have to worry about locking cables or the speed of reads or query searches because we've structured our data around a key value. Everything is super fast, and it basically removes any bottleneck related to databases in our application, and we just use reference keys. One document will reference the key of another document that we need, so we don't have to rely on searching.

What is most valuable?

Partitioning is helpful because we use it heavily. Partitions are really nice because they help with the collection of data. Not only is it fast to recall the data, but when you partition it, you can pull the partition and then query the exact document from that partition. It helps with data recall.

What needs improvement?

There's another feature that we just started implementing, which is partial updates of documents. It doesn't require the entire object to update, but updating documents across applications becomes difficult because you have to pull the entire document, which means you have to support the entire model to update it. So, that application has to know about every single parameter that may or may not have been added because if it reads and writes the document again, you'll lose data elements.

An improvement would be a more robust functionality around updating elements on a document, or some type of procedural updates that don't require pulling the entire document. Otherwise, you have to keep all of your apps up to date with the models, and that can be cumbersome and lead to errors. Usually, you don't always remember, and then it leads to some type of bug, but you won't realize why. You'll lose some value because you don't realize that you have some application that doesn't run often. You forget that it writes to that same document and you didn't update the model.

It would be nice to have some type of functionality for less common updating applications and to not always have to worry about keeping that model up to date.

There's some integration with Entity Framework and it's nice, but it's not robust and it would be good to have something like that when it comes to pulling data.

Occasionally, you have to query the database for values because we save our appointments and we don't have an index on appointments. We don't have a manual lookup for appointments, so we don't save it in another file. We have to run a query to get appointments that occur on a specific day and the downside of that is you have to use strings just to hardcode the string values. It would be nice to more easily integrate with a tool like Entity Framework, and I know that they do, but it's not an easy process. It would be nice to have an easier way without relying on text to query the database.

For how long have I used the solution?

I have used Cosmos DB for a year and a half.

What do I think about the stability of the solution?

There have been some configuration issues, but we haven't hit any thresholds or roadblocks when it comes to throughput. That was one of the reasons that we leaned toward it and not a relational database, especially at scale. We haven't run into any issues when it comes to that.

How are customer service and support?

We look at community answers because we can usually get answers faster than messaging support directly. We don't usually resort to a customer service type of support unless it's a fundamental issue. 

When we had an outage in the middle of the night, the turnaround time was within a few hours.

Which solution did I use previously and why did I switch?

Previously, I used Couchbase. I've also used Neptune, which is a different type of database. I've also used SQL.

We chose Cosmo DB because it's more tightly integrated. One of the reasons we chose this version of a non-relational database was because of the speed of development. We also chose Cosmos DB over other types of NoSQL databases because it's so tightly integrated with Azure, it's easily managed through deployment templates, and it's very easy to scale. If you're using Azure already, it's a very easy tool to pick up and integrate into your applications.

How was the initial setup?

Cosmos is pretty straightforward. There is more complexity, so you just have to be mindful. We had a small issue with making sure that the disaster recovery settings were set up correctly. We found out that there was some type of outage in the middle of the night, but we noticed that the failover didn't run properly. It was because of some configuration that should have been caught earlier, and it wasn't obvious that we got it wrong.

There are some infrastructure teams that manage some underlying resources that are related to Cosmos and some of the configurations, but for our specific implementation, we have three developers at most. We usually only need two people for maintaining and managing the solution.

What about the implementation team?

We deployed the solution in the cloud, but we configured everything in-house.

What was our ROI?

We have seen ROI. There's no active management when it comes to that. When I've worked on relational databases, there's a lot that goes on, like indexing, upgrades, and store procedures. I've managed relational databases for years while working on an application and worked with people who managed them. Cosmos is nearly maintenance-free and very easy to use.

What's my experience with pricing, setup cost, and licensing?

The pricing is really good. I would rate the cost as 9 out of 10. There may be some more complicated use cases that are more expensive. When we've budgeted for our resources, it's one of the more expensive ones, but it's still not very expensive per month.

What other advice do I have?

I would rate this solution as 8 out of 10. 

When it comes to ease of use, spinning up and working at scale, our specific use case, and the scalability that it offers, the solution is definitely very good.

My advice is to use containers as single objects and create manual indexing to improve efficiency.

Disclosure: I am a real user, and this review is based on my own experience and opinions.
PeerSpot user