What is our primary use case?
We primarily use UiPath Document Understanding for finance processes, covering both transactional procedures and reviews. One recent example involved streamlining the onboarding process, including pre-boarding, onboarding itself, and post-onboarding follow-up. The company typically requests various documents from applicants, which are then processed manually. However, due to variations in country-specific standards and requirements, HR personnel often spend significant time handling these documents.
Our solution involves creating a seamless online portal where applicants can upload their documents. These documents are automatically screened by the system and directly uploaded into the company's EFP system. This significantly reduces manual work for HR and finance teams. Similar automation applies to processing invoices from various suppliers in different formats. We leverage machine learning tools to train the system to read documents with varying complexity levels.
Essentially, the system mimics how an HR professional would process documents, capturing their knowledge and integrating it into the automated workflow. This reduces processing time and workload for both the company and its clients. Our focus lies on automating tasks within well-defined contexts, making us less involved in product development activities at this stage.
Initially, our clients were primarily interested in UiPath Document Understanding out of curiosity about its potential. Their main focus was on automation, but we also engaged in discussions about the broader benefits, such as time savings. We highlighted that a 30 percent time reduction allows them to focus on tasks with higher value. However, what I found even more crucial was the impact on lead times. Manual processes often lead to work stoppages, delays, and roadblocks. Automation, even partial, can significantly reduce lead times. For example, a task that previously took five weeks can now be completed in just a few days. While security concerns may necessitate some manual intervention, such as allowing the head of HR to retain some oversight, the overall process becomes more streamlined over time.
How has it helped my organization?
Most document processing is automated, improving efficiency and ease, especially in back-office transactions. However, areas like marketing, where business plans require creativity and flexibility, remain manual for now. Where documents are stored, and manipulated, and data needs to be extracted and distributed across various systems, the process is often cumbersome. Traditionally, someone would manually open each system, which is time-consuming, especially considering most companies have hundreds of them. This is where tools and systems come in, able to connect across platforms, read data from various sources, and make interpretations. The level of automation depends on the company's maturity. Sometimes we leverage their existing data, while other times we implement techniques to extract more insights. Ideally, we'd be able to predict and anticipate future needs, but for now, with clients, we're primarily focused on analyzing data and helping them automate their processes. This is the first step.
The volume and types of documents we process with UiPath Document Understanding vary depending on the client. For smaller companies with a few hundred employees, the needs are different than for large international corporations with thousands. These international clients often have diverse locations with varying processes and systems, making automation more challenging. In HR departments, for example, the sheer number of applicants and their associated documents can be immense. Ensuring accuracy is crucial, as mistakes can have significant consequences. Finance departments also present unique challenges, as data might be hidden or incomplete. This requires them to be at a certain level of maturity to benefit from automation effectively. The complexity of documents is another key factor. While machine learning can handle many documents, it has limitations. Some documents might be too time-consuming to train on, making the investment in automation impractical. This can leave a portion of documents requiring manual processing. Overall, UiPath Document Understanding automates the processing of the majority of documents we handle, around 80 percent. However, for the remaining 20 percent, manual intervention is still necessary due to document complexity, data limitations, or training time constraints.
UiPath Document Understanding helps us extract data from various document formats, including tables, handwritten content, checkboxes, and barcodes. However, poorly legible documents present a challenge. Automating 100 percent of documents is currently impossible due to diverse languages and handwritten sections. Our current approach categorizes documents into easy, medium, and complex based on difficulty. We prioritize easy documents as complex ones require significant time investment with uncertain results. Unfortunately, machine learning for document processing can be time-consuming. We prioritize documents based on return on investment. For example, if we have 10,000 documents, we might skip two unique ones, even if theoretically similar to others. If only two or three data points are needed, but the structure drastically varies, processing might not be worthwhile. Imagine a 10-page phone bill invoice with a minimal value of €10. Investing time in such documents offers a minimal return. Therefore, we focus on documents offering greater value.
Around 70 percent of the documents are processed automatically using UiPath Document Understanding.
UiPath excels at connecting with various systems compared to some competitors. This is crucial when promoting it to clients, as in our case with our UiPath partnership. All our developers have UiPath training, and we strongly believe in its capabilities. However, internal legacy systems within companies can pose challenges. For example, a client with an EFP system they plan to replace might hesitate to automate now. Integrating UiPath with basic IT infrastructure is essential, and frequent system changes demand flexible solutions. While UiPath is adaptable, we need to demonstrate its compatibility with various systems to gain client buy-in. This will make them more open to automation. It's important to remember that company maturity levels influence their automation openness. While UiPath has no control over that, adapting to ever-changing environments requires flexible systems. By showcasing UiPath's ability to work with different systems, we can overcome client hesitation and secure their trust in our proposed automation solutions.
It typically takes clients about a month to see the benefits of UiPath Document Understanding. We start by showing a demo. We often use the UiPath website itself for inspiration, and we also consult with UiPath staff to see if they have any pre-built demos for specific areas, such as onboarding. We create short, simple videos tailored to their needs and showcase them to both HR and IT personnel, giving them a glimpse of the solution before implementation. While deployment ultimately requires its timeline, we can typically craft a process description within a couple of weeks, allowing for a swift rollout. The tools themselves are relatively quick to use. In my experience, the main bottleneck usually lies within the client organization itself. Functional teams are often busy, have competing priorities, and sometimes change their decisions. Navigating these internal dynamics can be time-consuming. The actual development time for tasks like process mapping, decision-making, and technical implementation is relatively short, typically measured between 10 to 20 days. However, building consensus, convincing stakeholders, and developing a compelling business case can take considerably longer. Internally, clients often encounter both promoters and detractors – individuals who welcome or resist change. These internal dynamics are often the biggest hurdle. However, once the decision is made, we can quickly create a targeted demo showcasing the added value UiPath Document Understanding can bring.
On average, human validation takes just a few minutes. Additionally, the number of full-time equivalents was reduced by 30 percent - that's a significant achievement. Lead time has also decreased dramatically, much more than the FTE reduction. A small department of three people can now do the same work with two, freeing up one person for other tasks. It's important to note that lead time reduction depends on the specific case. Theoretically, in a perfect scenario with seamless workflow, automation tools operating 24/7, and no disruptions, a five-fold decrease in lead time is possible. However, real-world scenarios often involve unforeseen issues requiring manual intervention, limiting the maximum achievable reduction. Still, significant lead time reductions are attainable through consistent improvement efforts.
When it is done well we can reduce and improve the accuracy through automation helping to reduce human error.
What is most valuable?
For me, the most valuable aspects of UiPath Document Understanding are its time efficiency and minimal human intervention.
What needs improvement?
UiPath Document Understanding's ability to handle diverse document formats, including scans and signatures, needs improvement. While it can be learned from various examples, the accuracy suffers when presented with poorly scanned, multi-generation photocopies. Companies often struggle with repeated scanning and photocopying, leading to documents illegible even for humans. While the software can be trained on various signatures and handwriting styles, it requires a significant number of high-quality samples for optimal performance. This training process necessitates time and effort, and human verification often remains necessary. Initial excitement about the automation potential can be dampened by the reality of data quality limitations. Collaboration is key. While the tool has limitations, companies must also invest in providing high-quality training data to optimize results. Simply expecting the software to adapt without proper resources is unrealistic. Improvements in both tool capabilities and data quality are needed for truly reliable document understanding.
For how long have I used the solution?
I have been using UiPath Document Understanding for one year.
What do I think about the stability of the solution?
UiPath Document Understanding is stable.
What do I think about the scalability of the solution?
Up to this point, we have not encountered any scalability issues for UiPath Document Understanding.
How are customer service and support?
Both technical support and the commercial team need to actively listen to clients. Simply pushing products onto them is ineffective and often unwelcome. We frequently find ourselves caught in the middle, mediating between UiPath and clients with differing priorities. This lack of unified communication creates the impression that neither side is truly listening to the other.
It's crucial to pay close attention to clients' specific concerns, as their needs often extend beyond a single product. They may have broader goals and considerations that we are unaware of. By actively listening, we can gain valuable insights and build stronger relationships.
How would you rate customer service and support?
What about the implementation team?
We implement the solution for our clients.
What's my experience with pricing, setup cost, and licensing?
One of the biggest challenges we face with UiPath is the pricing structure. It's often opaque and difficult to understand the true cost involved. This makes it hard to have transparent conversations with clients, as any lack of clarity can raise concerns about hidden fees or manipulation. Our goal is simply to understand the pricing ourselves, but the complex structure creates an unnecessary obstacle.
Thankfully, the UiPath team recognizes this issue and is actively working with partners to improve communication and transparency. We've seen initiatives from their Chief Marketing Officer aimed at strengthening partner relationships, specifically addressing the pricing concerns. While they often propose pre-defined packages designed to sell bundled functionalities, these aren't always appropriate for every client's needs.
We've experienced situations where clients express interest in a specific solution but decline the complete package. When we relay this feedback to UiPath, they sometimes counter with larger, multi-year contracts that significantly exceed the client's budget and desire for a trial period. This makes it challenging to demonstrate the value of UiPath in a way that aligns with the client's initial request.
Ultimately, what we need is a more flexible and transparent pricing structure that allows clients to start small, experiment with specific solutions, and scale up as needed. This would significantly improve our ability to have open and honest conversations with clients and build trust in the UiPath platform.
We should pay closer attention to listening to our clients. In my experience, I've observed conversations between UiPath and clients where they clearly explain their needs. While UiPath naturally wants to sell larger deals, they should prioritize active listening. The client may not always be 100 percent accurate, but pushing big deals is counterproductive.
UiPath, of course, wants to secure larger deals with longer contracts. This is understandable, as automating for only 3-6 months wouldn't be ideal. However, clients often want to pilot tools first. They need to justify the investment to internal stakeholders and prove the added value. Selling them pre-packaged solutions designed for other clients, particularly those in different regions or industries, often proves ineffective.
Clients seek adaptable solutions that fit their specific context. Large companies with thousands of employees have access to numerous competitors. We can't assume they won't explore other options. While polite on the surface, they're actively seeking the best solution for their needs.
While UiPath offers excellent solutions, they sometimes fall on the higher-priced end compared to alternatives like Microsoft, which might appear more affordable on the surface. Clients who already have established contracts with Microsoft might be more inclined to choose their products unless we can effectively demonstrate the unique value proposition UiPath offers. This goes beyond mere cost and includes aspects like security, which is paramount in Switzerland. Clients often require data control and prefer on-premise or regulated cloud storage options.
Data security is a major concern for many companies. Cloud solutions, while attractive, aren't always universally accepted. Factors like industry regulations and legal requirements often dictate data storage options. Defense, oil and gas, and other sensitive sectors have stricter constraints imposed by their legal departments.
In conclusion, while larger deals are desirable, focusing on active listening and adapting solutions to each client's specific needs is crucial. Highlighting unique value propositions beyond cost, such as robust security and data control options, will differentiate UiPath from competitors and win over clients.
What other advice do I have?
I rate UiPath Document Understanding eight out of ten. In my experience, UiPath Document Understanding stands out as a superior solution compared to other document processing tools I've encountered.
The future lies in leveraging artificial intelligence or machine learning to accelerate progress across various landscapes. Recently, we encountered a situation where technicians presented a series of documents with a medium-high level of complexity. They proposed running a machine for a month to process them, but this was unrealistic for management. The lead time for new document processing needs to be appropriate. While processing in a day is acceptable, dedicating a team for a month to a single document type is impractical. Scaling up operations requires flexibility and adaptability. For example, testing tools in one country and then scaling to another presents challenges due to different environments and document types. This necessitates a more powerful machine with faster processing and the ability to handle diverse document formats. Ultimately, such advancements will significantly improve the system's efficiency.
The amount of human validation required for UiPath Document Understanding outputs varies based on the client. While some clients may hesitate to trust complete automation, others recognize its potential. However, for sensitive tasks like contract reviews, they wouldn't send documents to external candidates without human verification. Therefore, the initial steps involve clarifying expectations with the client. During implementation, adjustments might be needed, and even after the tool is operational, some human involvement is typically built into the process for added confidence. Over time, as trust in the system grows, these checks can be gradually reduced. However, eliminating all checks could be risky.
Most of our clients prefer on-premise deployments and for any Cloud deployments, the servers must be located in Switzerland.
Many organizations fall into the trap of automation neglect. They implement new tools or processes, only to abandon them later due to lack of maintenance. While initial implementation may bring a sense of accomplishment, this approach ultimately fails to deliver business value. Beyond simply implementing technology, user adoption, and ongoing maintenance are crucial. IT systems should be seen as part of a continuous improvement journey, not one-time solutions. Analyzing processes, strategy, and people allows for ongoing optimization, where digital tools empower improvement instead of creating isolated interventions. To avoid the common pitfall of neglected automation, consider establishing a Center of Excellence. This central team can provide support, guidance, and expertise to local users, ensuring the system functions effectively and delivers lasting value.
Before organizations implement UiPath Document Understanding, they need to clearly define their desired outcomes and understand that successful implementation requires both adapting their documents and refining their processes. While it's tempting to see automation as a magic bullet for fixing dysfunctional processes, it's crucial to address underlying issues beforehand. This involves simultaneous work on process improvement and document optimization. For example, when I consider the HR department I worked with. The key was to first understand their existing workflow through process mapping. Then, we identified bottlenecks and potential improvement areas based on their feedback. While developing the automation, we also reviewed their document structure and eliminated unnecessary documents. This combined approach ensured that the implemented process and tools were efficient and streamlined. Simply speeding up a flawed process with automation often proves ineffective, leading to user dissatisfaction and a perception of failure. The problem doesn't lie with the tool itself, but rather with the lack of skilled staff who understand the processes they manage, their purpose, and the specific complexities of the company and its unique environment.
Which deployment model are you using for this solution?
On-premises
Disclosure: My company has a business relationship with this vendor other than being a customer: partner