Try our new research platform with insights from 80,000+ expert users

Amazon Comprehend vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon Comprehend
Ranking in Data Science Platforms
20th
Average Rating
8.0
Reviews Sentiment
7.4
Number of Reviews
2
Ranking in other categories
No ranking in other categories
Microsoft Azure Machine Lea...
Ranking in Data Science Platforms
5th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
62
Ranking in other categories
AI Development Platforms (5th)
 

Mindshare comparison

As of January 2026, in the Data Science Platforms category, the mindshare of Amazon Comprehend is 0.6%, up from 0.5% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 3.7%, down from 5.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
Microsoft Azure Machine Learning Studio3.7%
Amazon Comprehend0.6%
Other95.7%
Data Science Platforms
 

Featured Reviews

Ashish Lata - PeerSpot reviewer
Professional Freelancer at Open for all
Integration with automation tools enhances customer sentiment analysis
Comprehend is a useful service for sentiment analysis as it analyzes customer transcripts to evaluate interactions between customers and agents. It provides scores indicating whether sentiments are positive, negative, or neutral. The integration with AWS services like DynamoDB and Lambda facilitates automated analysis, contributing to more informed assessments of customer interactions.
reviewer2722962 - PeerSpot reviewer
Data Scientist
Platform accelerates model development, enhances collaboration, and offers efficient deployment
The best features Microsoft Azure Machine Learning Studio offers include deep integration with Python notebooks and Azure Data Lake, which allows me to import external data, and through the pipeline, I can build my models, performing what is called data injection for my model building, making that deep integration quite interesting to use. Microsoft Azure Machine Learning Studio is a powerful platform for those already in the Azure ecosystem because it allows for scalability and provides a good environment for reproducibility, as well as collaboration tools, all designed and packaged in one place, which makes it outstanding. Microsoft Azure Machine Learning Studio has positively impacted my organization by reducing our project delivery times and increasing the pace at which we work, allowing us to focus on other more important tasks. Using Microsoft Azure Machine Learning Studio has reduced our model development time from approximately four hours to about two hours.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Amazon Comprehend works with a large pool of doctors. They're building the product based on working with domain experts."
"I am totally happy with AWS support, as they provide excellent solutions."
"The visualizations are great. It makes it very easy to understand which model is working and why."
"Microsoft Azure Machine Learning Studio offers a hands-on experience with lots of flexibility."
"The solution is integrated with our Microsoft Azure tenant, and we don't have to go anywhere else outside the tenant."
"The platform as a service provides user-friendly instruments, making the experience easy."
"The AutoML is helpful when you're starting to explore the problem that you're trying to solve."
"Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints."
"The most valuable feature of Microsoft Azure Machine Learning Studio is the ease of use for starting projects. It's simple to connect and view the results. Additionally, the solution works well with other Microsoft solutions, such as Power Automate or SQL Server. It is easy to use and to connect for analytics."
"What I like best about Microsoft Azure Machine Learning Studio is that it's a straightforward tool and it's easy to use. Another valuable feature of the tool is AutoML which lets you get better metrics to train the model right and with good accuracy. The AutoML feature allows you to simply put in your data, and it'll pre-process and create a more accurate model for you. You don't have to do anything because AutoML in Microsoft Azure Machine Learning Studio will take care of it."
 

Cons

"It is a bit complex to scale. It is still evolving as a product."
"There is room for improvement in terms of accuracy. For example, when a sentence expresses a negative sentiment, such as 'I want to cancel my credit card,' it is crucial for the system to accurately identify it as negative."
"The pricing policy should be improved. I find the pricing to be not a good story in this case, as it is not affordable for everyone."
"The data processor can pose a bit of a challenge, but the real complexity is determined by the skill of the implementation team."
"Microsoft should also include more examples and tutorials for using this product.​"
"n the solution, there is the concept of workspaces, and there is no means to share the computing infrastructure across those workspaces."
"Microsoft Azure Machine Learning Studio could improve in providing more efficient and cost-effective access to its tools for companies like mine."
"I think it should be made cheaper for certain people…It may appear costlier for those who don't consider time important."
"The solution should be more customizable. There should be more algorithms."
"In the Machine Learning Studio, particularly the Designer part, which is essentially Azure's demo designer, there is room for improvement. Many customers and users tend to switch to Microsoft Azure Multi-Joiners, which is a more basic version, but they do so internally. One area that could use enhancement is the process of connecting components. Currently, every time you want to connect a component, such as linking it to your storage or an instance like EC2, you have to input your username and password repeatedly. This can be quite cumbersome. Google, for instance, has made it more user-friendly by allowing easy access for connecting services within a workspace. In a workspace, you can set up various resources like storage, a database cluster, machine learning studio, and more. When connecting these services, there's no need to enter your username and password each time, making it a more efficient process. Another aspect to consider is the role of the designer, and they were to integrate a large language model to handle various tasks, it could significantly enhance the overall scalability and usability of the platform."
 

Pricing and Cost Advice

Information not available
"The solution cost is high."
"The product's pricing is reasonable."
"There is a lack of certainty with the solution's pricing."
"We pay only the Azure costs for what we use, which involves some subscription costs. But essentially, you pay for what you use. There are no extra costs in addition to the standard licensing fees."
"The product is not that expensive."
"When we got our first models and were ready for the user acceptance testing, our licensing fees were between €2,500 ($2,750 USD) and €3,000 ($3,300 USD) monthly."
"There isn’t any such expensive costs and only a standard license is required."
"I rate the product price as a nine on a scale of one to ten, where ten means it is very expensive."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
879,711 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
No data available
Financial Services Firm
11%
Computer Software Company
9%
Manufacturing Company
9%
Performing Arts
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
By reviewers
Company SizeCount
Small Business23
Midsize Enterprise6
Large Enterprise30
 

Questions from the Community

What needs improvement with Amazon Comprehend?
Regarding improvements, I would focus on accuracy. For example, if a customer says, 'I want to cancel my credit card,' it should clearly be identified as a negative sentiment. Improving accuracy in...
What is your primary use case for Amazon Comprehend?
I have used Amazon Comprehend primarily for sentiment analysis in my project. I analyze customer transcripts to determine if they are satisfied with the agents they interact with. I store the trans...
What advice do you have for others considering Amazon Comprehend?
I would rate Amazon Comprehend an eight out of ten because there is always room for improvement, especially in terms of accuracy. For those new to Comprehend, understanding its usage and reviewing ...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
The pricing for Microsoft Azure Machine Learning Studio is reasonable since it's pay as you go, meaning it won't cost excessively unless specific resources are used.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

LexisNexis, Vibes, FINRA, VidMob
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Amazon Comprehend vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: December 2025.
879,711 professionals have used our research since 2012.