Find out what your peers are saying about Snowflake Computing, Microsoft, Google and others in Cloud Data Warehouse.
It's costly when you enable support.
They are slow to respond and not very knowledgeable.
I received great support in migrating data to Snowflake, with quick responses and innovative solutions.
The technical support from Snowflake is very good, nice, and efficient.
The scalability part needs improvement as the sizing requires trial and error.
Microsoft Azure Synapse Analytics is scalable, offering numerous opportunities for scalability.
The billing doubles with size increase, but processing does not necessarily speed up accordingly.
Snowflake is very scalable and has a dedicated team constantly improving the product.
Amazon Redshift is a stable product, and I would rate it nine or ten out of ten for stability.
I find the service stable as I have not encountered many issues.
Snowflake as a SaaS offering means that maintenance isn't an issue for me.
Snowflake is very stable, especially when used with AWS.
They should bring the entire ETL data management process into Amazon Redshift.
There is a need for better documentation, particularly for customized tasks with Microsoft Azure Synapse Analytics.
Enhancements in user experience for data observability and quality checks would be beneficial, as these tasks currently require SQL coding, which might be challenging for some users.
Cost reduction is one area I would like Snowflake to improve.
The cost of technical support is high.
It's a pretty good price and reasonable for the product quality.
The pricing of Amazon Redshift is expensive.
Snowflake's pricing is on the higher side.
Snowflake lacks transparency in estimating resource usage.
Scalability is also a strong point; I can scale it however I want without any limitations.
Amazon Redshift's performance optimization and scalability are quite helpful, providing functionalities such as scaling up and down.
Security configurations are implemented across all processes, such as AWS Config and GuardDuty.
Microsoft Azure Synapse Analytics offers significant visibility, which helps us understand our usage more clearly.
One key feature is the separation of compute and storage, which eliminates storage limitations.
The scalability options it provides, addressing issues without tying workloads into one virtual machine, enhance functionality.
Amazon Redshift is a fully administered, petabyte-scale cloud-based data warehouse service. Users are able to begin with a minimal amount of gigabytes of data and can easily scale up to a petabyte or more as needed. This will enable them to utilize their own data to develop new intuitions on how to improve business processes and client relations.
Initially, users start to develop a data warehouse by initiating what is called an Amazon Redshift cluster or a set of nodes. Once the cluster has been provisioned, users can seamlessly upload data sets, and then begin to perform data analysis queries. Amazon Redshift delivers super-fast query performance, regardless of size, utilizing the exact SQL-based tools and BI applications that most users are already working with today.
The Amazon Redshift service performs all of the work of setting up, operating, and scaling a data warehouse. These tasks include provisioning capacity, monitoring and backing up the cluster, and applying patches and upgrades to the Amazon Redshift engine.
Amazon Redshift Functionalities
Amazon Redshift has many valuable key functionalities. Some of its most useful functionalities include:
Reviews from Real Users
“Redshift's versioning and data security are the two most critical features. When migrating into the cloud, it's vital to secure the data. The encryption and security are there.” - Kundan A., Senior Consultant at Dynamic Elements AS
“With the cloud version whenever you want to deploy, you can scale up, and down, and it has a data warehousing capability. Redshift has many features. They have enriched and elaborate documentation that is helpful.”- Aishwarya K., Solution Architect at Capgemini
Microsoft Azure Synapse Analytics is an end-to-end analytics solution that successfully combines analytical services to merge big data analytics and enterprise data warehouses into a single unified platform. The solution can run intelligent distributed queries among nodes, and provides the ability to query both relational and non-relational data.
Microsoft Azure Synapse Analytics is built with these 4 components:
Microsoft Azure Synapse Analytics Features
Microsoft Azure Synapse Analytics has many valuable key features, including:
Microsoft Azure Synapse Analytics Benefits
Some of the benefits of using Microsoft Azure Synapse Analytics include:
Reviews from Real Users
Below are some reviews and helpful feedback written by Microsoft Azure Synapse Analytics users who are currently using the solution.
PeerSpot user Jael S., who is an Information Architect at Systems Analysis & Design Engineering, comments on her experience using the product, saying that it is “Scalable, intuitive, facilitates compliance and keeps your data secure”. She also says "We also like governance. It looks at what the requirements are for the company to identify the best way to ensure compliance is met when you move to the cloud."
Michel T., CHTO at Timp-iT, mentions that "the features most valuable are the simplicity, how easy it is to create a dashboard from different information systems."
A Senior Teradata Consultant at a tech services company says, "Microsoft provides both the platform and the data center, so you don't have to look for a cloud vendor. It saves you from having to deal with two vendors for the same task."
Snowflake is a cloud-based data warehousing solution for storing and processing data, generating reports and dashboards, and as a BI reporting source. It is used for optimizing costs and using financial data, as well as for migrating data from on-premises to the cloud. The solution is often used as a centralized data warehouse, combining data from multiple sources.
Snowflake has helped organizations improve query performance, store and process JSON and XML, consolidate multiple databases into one unified table, power company-wide dashboards, increase productivity, reduce processing time, and have easy maintenance with good technical support.
Its platform is made up of three components:
Snowflake has many valuable vital features. Some of the most useful ones include:
There are many benefits to implementing Snowflake. It helps optimize costs, reduce downtime, improve operational efficiency, and automate data replication for fast recovery, and it is built for high reliability and availability.
Below are quotes from interviews we conducted with users currently using the Snowflake solution:
Sreenivasan R., Director of Data Architecture and Engineering at Decision Minds, says, "Data sharing is a good feature. It is a majorly used feature. The elastic computing is another big feature. Separating computing and storage gives you flexibility. It doesn't require much DBA involvement because it doesn't need any performance tuning. We are not doing any performance tuning, and the entire burden of performance and SQL tuning is on Snowflake. Its usability is very good. I don't need to ramp up any user, and its onboarding is easier. You just onboard the user, and you are done with it. There are simple SQL and UI, and people are able to use this solution easily. Ease of use is a big thing in Snowflake."
A director of business operations at a logistics company mentions, "It requires no maintenance on our part. They handle all that. The speed is phenomenal. The pricing isn't really anything more than what you would be paying for a SQL server license or another tool to execute the same thing. We have zero maintenance on our side to do anything and the speed at which it performs queries and loads the data is amazing. It handles unstructured data extremely well, too. So, if the data is in a JSON array or an XML, it handles that super well."
A Solution Architect at a wholesaler/distributor comments, "The ability to share the data and the ability to scale up and down easily are the most valuable features. The concept of data sharing and data plumbing made it very easy to provide and share data. The ability to refresh your Dev or QA just by doing a clone is also valuable. It has the dynamic scale up and scale down feature. Development and deployment are much easier as compared to other platforms where you have to go through a lot of stuff. With a tool like DBT, you can do modeling and transformation within a single tool and deploy to Snowflake. It provides continuous deployment and continuous integration abilities. There is a separation of storage and compute, so you only get charged for your usage. You only pay for what you use. When we share the data downstream with business partners, we can specifically create compute for them, and we can charge back the business."