Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs Saturn Cloud comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in Data Science Platforms
3rd
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
36
Ranking in other categories
AI Development Platforms (4th)
Saturn Cloud
Ranking in Data Science Platforms
10th
Average Rating
10.0
Reviews Sentiment
7.5
Number of Reviews
6
Ranking in other categories
AWS Marketplace (14th)
 

Mindshare comparison

As of January 2025, in the Data Science Platforms category, the mindshare of Amazon SageMaker is 7.7%, down from 10.0% compared to the previous year. The mindshare of Saturn Cloud is 0.2%, up from 0.1% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Hemant Paralkar - PeerSpot reviewer
Improves team collaboration with advanced feature sharing but needs a better user experience
Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker. This would empower citizen data scientists to utilize the tool more effectively since many data scientists do not have a core development background. Additionally, dealing with frequent UI updates can be challenging, especially for infrastructure architects like myself. It involves effort to migrate to new UIs, making the updates not seamless. User auditing requires enhancements as tracking operations performed by users can be difficult due to dynamic IP validation and role propagation.
Alessandro Trinca Tornidor - PeerSpot reviewer
Good for creating POCs, training machine learning models, and experimenting without local resources
The project I’m currently working on relies on CUDA, but my local PC does not have any Nvidia GPUs. I’ve found the computational resources and ease of use provided by Saturn Cloud invaluable. Also, there are many ready-to-use Docker images and a rich documentation portal with useful examples. The dashboard for creating a new virtual environment contains almost all the features I needed: environment variable definitions, git repositories cloning directly from the new resources page, and an edit field to define a custom script during the boot process. For this reason, Saturn Cloud.io is a very good solution for creating POCs, training machine learning models, and generally experimenting a bit without worrying about local resources.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most valuable features in Amazon SageMaker are its AutoML, feature store, and automated hyperparameter tuning capabilities."
"We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for these models, making accessing them convenient as needed."
"They offer insights into everyone making calls in my organization."
"The few projects we have done have been promising."
"The intuitive interface and streamlined user experience make it easy to navigate and set up various tools like Visual Studio Code or Jupyter Notebook."
"The most valuable features include the ML operations that allow for designing, deploying, testing, and evaluating models."
"Allows you to create API endpoints."
"The tool makes our ML model development a bit more efficient because everything is in one environment."
"They provide a centralized space for data, code, and results."
"It didn't take long to see that Saturn Cloud could scale with my needs, providing more resources when required."
"The feature I like the most about Saturn Cloud is that it has lightning-fast CPUs."
"Saturn Cloud supports GPU as part of the environment, which is essential for many computational tasks in machine learning projects. It also allows us to edit the environment, including the image, before we start the cloud resources. This feature lets us quickly set up the environment without the hassle of moving the data and code to another cloud device."
"There is plenty of computational resources (both GPU, CPU and disk space)."
"It offered an excellent development environment while not touching our production cloud resources."
 

Cons

"The payment and monitoring metrics are a bit confusing not only for Amazon SageMaker but also for the range of other products that fall under AWS, especially for a new user of the product."
"Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker. This would empower citizen data scientists to utilize the tool more effectively since many data scientists do not have a core development background."
"Creating notebook instances for multiple users is pretty expensive in Amazon SageMaker."
"Amazon SageMaker could improve in the area of hyperparameter tuning by offering more automated suggestions and tips during the tuning process."
"SageMaker would be improved with the addition of reporting services."
"Amazon might need to emphasize its capabilities in generative models more effectively."
"The model repository is a concern as models are stored on a bucket and there's an issue with versioning."
"In general, improvements are needed on the performance side of the product's graphical user interface-related area since it consumes a lot of time for a user."
"Providing more detailed and beginner-friendly documentation, especially for advanced features, could greatly enhance the user experience."
"My main suggestion for improvement centers on pricing. Introducing a tier modelled after AWS spot instances would be a game-changer."
"We'd like to have the capability for installing more libraries."
"Public Clouds integration and sandbox environments would be a true game changer."
"Saturn Cloud should include prebuilt images for advanced data science packages like LightGBM in the next release. If possible, they should also provide a Kaggle image, which contains the most common Python packages used in machine learning."
"It would be nice to have more hardware category options, like TPU coprocessors or ARM64 CPUs."
 

Pricing and Cost Advice

"The pricing could be better, especially for querying. The per-query model feels expensive."
"The support costs are 10% of the Amazon fees and it comes by default."
"The pricing is comparable."
"In terms of pricing, I'd also rate it ten out of ten because it's been beneficial compared to other solutions."
"I would rate the solution's price a ten out of ten since it is very high."
"The tool's pricing is reasonable."
"I rate the pricing a five on a scale of one to ten, where one is the lowest price, and ten is the highest price. The solution is priced reasonably. There is no additional cost to be paid in excess of the standard licensing fees."
"The solution is relatively cheaper."
Information not available
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
831,020 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Educational Organization
14%
Computer Software Company
11%
Manufacturing Company
9%
No data available
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
Before deploying SageMaker, I reviewed the pricing, especially for notebook instances. The cost for small to medium instances is not very high.
What do you like most about Saturn Cloud?
There is plenty of computational resources (both GPU, CPU and disk space).
What needs improvement with Saturn Cloud?
My main suggestion for improvement centers on pricing. Introducing a tier modelled after AWS spot instances would be a game-changer. Users could bid on unused compute capacity, potentially leading ...
What is your primary use case for Saturn Cloud?
I'm leveraging a cloud-based platform for competitive machine learning. Tight deadlines and resource-intensive models demand powerful hardware. The cloud provides scalable GPUs and RAM, letting me ...
 

Comparisons

 

Also Known As

AWS SageMaker, SageMaker
No data available
 

Learn More

 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
Nvidia, Snowflake, Kaggle, Faeth, Advantest, Stanford University, Senseye and more.
Find out what your peers are saying about Amazon SageMaker vs. Saturn Cloud and other solutions. Updated: December 2024.
831,020 professionals have used our research since 2012.