Find out in this report how the two Cloud Data Warehouse solutions compare in terms of features, pricing, service and support, easy of deployment, and ROI.
When it comes to big data processing, I prefer Databricks over other solutions.
For a lot of different tasks, including machine learning, it is a nice solution.
rating the customer support at ten points out of ten
Whenever we reach out, they respond promptly.
The scalability is definitely good because we are migrating to the cloud since the computers on the premises or the big database we need are no longer enough.
The patches have sometimes caused issues leading to our jobs being paused for about six hours.
They release patches that sometimes break our code.
Cluster failure is one of the biggest weaknesses I notice in our Databricks.
In general, if I know SQL and start playing around, it will start making sense.
Troubleshooting requires opening each pipeline individually, which is time-consuming.
It would be beneficial to have utilities where code snippets are readily available.
Adjusting features like worker nodes and node utilization during cluster creation could mitigate these failures.
We prefer using a small to mid-sized cluster for many jobs to keep costs low, but this sometimes doesn't support our operations properly.
The price is perceived as expensive, rated at eight out of ten in terms of costliness.
It is really fast because it can process millions of rows in just a matter of one or two seconds.
BigQuery processes a substantial amount of data, whether in gigabytes or terabytes, swiftly producing desired data within one or two minutes.
Databricks' capability to process data in parallel enhances data processing speed.
The notebooks and the ability to share them with collaborators are valuable, as multiple developers can use a single cluster.
BigQuery is an enterprise data warehouse that solves this problem by enabling super-fast SQL queries using the processing power of Google's infrastructure. ... You can control access to both the project and your data based on your business needs, such as giving others the ability to view or query your data.
Databricks is utilized for advanced analytics, big data processing, machine learning models, ETL operations, data engineering, streaming analytics, and integrating multiple data sources.
Organizations leverage Databricks for predictive analysis, data pipelines, data science, and unifying data architectures. It is also used for consulting projects, financial reporting, and creating APIs. Industries like insurance, retail, manufacturing, and pharmaceuticals use Databricks for data management and analytics due to its user-friendly interface, built-in machine learning libraries, support for multiple programming languages, scalability, and fast processing.
What are the key features of Databricks?
What are the benefits or ROI to look for in Databricks reviews?
Databricks is implemented in insurance for risk analysis and claims processing; in retail for customer analytics and inventory management; in manufacturing for predictive maintenance and supply chain optimization; and in pharmaceuticals for drug discovery and patient data analysis. Users value its scalability, machine learning support, collaboration tools, and Delta Lake performance but seek improvements in visualization, pricing, and integration with BI tools.
We monitor all Cloud Data Warehouse reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.