Try our new research platform with insights from 80,000+ expert users

Dataiku vs IBM SPSS Modeler comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Dataiku
Ranking in Data Science Platforms
7th
Average Rating
8.0
Reviews Sentiment
7.2
Number of Reviews
9
Ranking in other categories
No ranking in other categories
IBM SPSS Modeler
Ranking in Data Science Platforms
13th
Average Rating
8.0
Reviews Sentiment
6.6
Number of Reviews
39
Ranking in other categories
Data Mining (4th)
 

Mindshare comparison

As of January 2025, in the Data Science Platforms category, the mindshare of Dataiku is 12.1%, up from 7.8% compared to the previous year. The mindshare of IBM SPSS Modeler is 2.3%, down from 2.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Sabrine Bendimerad - PeerSpot reviewer
Saves a lot of time because I can quickly handle all the data preparation tasks and concentrate on building my machine learning algorithms
One of the main challenges was collaboration. Developers typically use GitHub to push and manage code, but integrating GitHub with Dataiku was complicated. While it was theoretically possible to use GitHub with Dataiku, in practice, it was difficult to manage our code effectively and push it from Dataiku to GitHub. Another limitation was its ability to handle different types of data. While Dataiku is powerful for working with structured data, like regular or geospatial data, it struggled with more complex data types such as text and image. In addition to the challenges with GitHub integration, the limited support for diverse data types was another feature lacking at that time.
PeterHuo - PeerSpot reviewer
Good tool for extracting data from data warehouses, creating streams, and manipulating logic to extract final data
There are performance issues. Extracting data from many combined tables can take hours and occasionally crash the server due to memory leaks. This performance problem bothers people. The performance issue seems to be related to the server. We design streams on the client and submit them to the server, which generates a large SQL statement. There are two potential bottlenecks: one in the server and another in data extraction. I'm unsure about the exact mechanics of data splitting when fetching from the database. When streams become larger, performance bottlenecks may occur in the IBM SPSS Modeler server or the database. Sometimes the server crashes and needs to be restarted to release memory on both sides. I'm not sure exactly where the problem is caused, as I focus on stream design rather than server issues. The problem could be on the IBM SPSS Modeler server and database.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most valuable feature is the set of visual data preparation tools."
"Traceability is vital since I manage many cohorts, and collaboration is key as I have multiple engineers substituting for one another."
"I like the interface, which is probably my favorite part of the solution. It is really user-friendly for an IT person."
"I rate the overall product as eight out of ten."
"The advantage is that you can focus on machine learning while having access to what they call 'recipes.' These recipes allow me to preprocess and prepare data without writing any code."
"The most valuable feature of this solution is that it is one tool that can do everything, and you have the ability to very easily push your design to prediction."
"Cloud-based process run helps in not keeping the systems on while processes are running."
"If many teams are collaborating and sharing Jupyter notebooks, it's very useful."
"We are using it either for workforce deployment or to improve our operations."
"It gives you a GUI interface, which is a lot more user-friendly and easier to use compared to writing R scripts or Python."
"It handles large data better than the previous system that we were using, which was basically Excel and Access. We serve upwards of 300,000 parts over a 150 regions and we need to crunch a lot of numbers."
"The ease of use in the user interface is the best part of it. The ability to customize some of my streams with R and Python has been very useful to me, I've automated a few things with that."
"The supervised models are valuable. It is also very organized and easy to use."
"Some basic form of feature engineering for classification models. This really quickens the model development process."
"It is pretty scalable."
"We have been able to do some predictive modeling with it"
 

Cons

"I think it would help if Data Science Studio added some more features and improved the data model."
"Server up-time needs to be improved. Also, query engines like Spark and Hive need to be more stable."
"I find that it is a little slow during use. It takes more time than I would expect for operations to complete."
"The license is very expensive. It would be great to have an intermediate license for basic treatments that do not require extensive experience."
"In the next release of this solution, I would like to see deep learning better integrated into the tool and not simply an extension or plugin."
"Dataiku still needs some coding, and that could be a difference where business data scientists would go for DataRobot more than Dataiku."
"The interface for the web app can be a bit difficult. It needs to have better capabilities, at least for developers who like to code. This is due to the fact that everything is enabled in a single window with different tabs. For them to actually develop and do the concurrent testing that needs to be done, it takes a bit of time. That is one improvement that I would like to see - from a web app developer perspective."
"Although known for Big Data, the processing time to process 1.8 billion records was terribly slow (five days)."
"The challenge for the very technical data scientists: It is constraining for them.​"
"I think mapping for geographic data would also be a really great thing to be able to use."
"Dimension reduction should be classified separately."
"It is very good, but slow. The slowness may be because we have not finalized all the background information in SPSS. It still needs some tweaking."
"Unstructured data is not appropriate for SPSS Modeler."
"We have run into a few problems doing some entity matching/analytics."
"I can say the solution is outdated."
"There are performance issues. Extracting data from many combined tables can take hours and occasionally crash the server due to memory leaks. This performance problem bothers people. The performance issue seems to be related to the server. We design streams on the client and submit them to the server, which generates a large SQL statement. There are two potential bottlenecks: one in the server and another in data extraction. I'm unsure about the exact mechanics of data splitting when fetching from the database."
 

Pricing and Cost Advice

"Pricing is pretty steep. Dataiku is also not that cheap."
"The annual licensing fees are approximately €20 ($22 USD) per key for the basic version and €40 ($44 USD) per key for the version with everything."
"This tool, being an IBM product, is pretty expensive."
"I am using the free version of IBM SPSS Modeler, it is the educational edition version."
"When you are close to end of quarter, IBM and its partners can get you 60% to 70% discounts, so literally wait for the last day of the quarter for the best prices. You may feel like you are getting robbed if you can't receive a good discount."
"It is a huge increase to time savings."
"Its price is okay for a company, but for personal use, it is considered somewhat expensive."
"It got us a good amount of money with quick and efficient modeling."
"$5,000 annually."
"Having in mind all four tools from Garner’s top quadrant, the pricing of this tool is competitive and it reflects the quality that it offers."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
831,071 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Educational Organization
16%
Manufacturing Company
9%
Computer Software Company
8%
Educational Organization
13%
Financial Services Firm
13%
Computer Software Company
9%
University
9%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What needs improvement with Dataiku Data Science Studio?
One of the main challenges was collaboration. Developers typically use GitHub to push and manage code, but integrating GitHub with Dataiku was complicated. While it was theoretically possible to us...
What is your primary use case for Dataiku Data Science Studio?
We use the solution for data science and machine learning.
What do you like most about IBM SPSS Modeler?
Compared to other tools, the product works much easier to analyze data without coding.
What is your experience regarding pricing and costs for IBM SPSS Modeler?
The government has funds and a budget, it's hard to say if it's expensive or cheap. In Canada, they have a yearly budget. They used to encourage people to use the modeler for development. If ten us...
What needs improvement with IBM SPSS Modeler?
There are performance issues. Extracting data from many combined tables can take hours and occasionally crash the server due to memory leaks. This performance problem bothers people. The performanc...
 

Comparisons

 

Also Known As

Dataiku DSS
SPSS Modeler
 

Learn More

Video not available
 

Overview

 

Sample Customers

BGL BNP Paribas, Dentsu Aegis, Link Mobility Group, AramisAuto
Reisebªro Idealtours GmbH, MedeAnalytics, Afni, Israel Electric Corporation, Nedbank Ltd., DigitalGlobe, Vodafone Hungary, Aegon Hungary, Bureau Veritas, Brammer Group, Florida Department of Juvenile Justice, InSites Consulting, Fortis Turkey
Find out what your peers are saying about Dataiku vs. IBM SPSS Modeler and other solutions. Updated: December 2024.
831,071 professionals have used our research since 2012.