Try our new research platform with insights from 80,000+ expert users

Dataiku vs IBM SPSS Modeler comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Dataiku
Ranking in Data Science Platforms
6th
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
12
Ranking in other categories
No ranking in other categories
IBM SPSS Modeler
Ranking in Data Science Platforms
17th
Average Rating
8.0
Reviews Sentiment
6.3
Number of Reviews
40
Ranking in other categories
Data Mining (4th)
 

Mindshare comparison

As of September 2025, in the Data Science Platforms category, the mindshare of Dataiku is 12.3%, up from 10.3% compared to the previous year. The mindshare of IBM SPSS Modeler is 2.5%, up from 2.5% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
Dataiku12.3%
IBM SPSS Modeler2.5%
Other85.2%
Data Science Platforms
 

Featured Reviews

RichardXu - PeerSpot reviewer
The platform organizes workflows visually and efficiently
One of the valuable features of Dataiku is the workflow capability. It allows us to organize a workflow efficiently. The platform has a visual interface, making it much easier for educated professionals to organize their work. This feature is useful because it simplifies tasks and eliminates the need for a data scientist. If you are knowledgeable about AI, you can directly write using primitive tools like Pantera flow, PyTorch, and Scikit-learn. However, Dataiku makes this process much easier.
PeterHuo - PeerSpot reviewer
Good tool for extracting data from data warehouses, creating streams, and manipulating logic to extract final data
There are performance issues. Extracting data from many combined tables can take hours and occasionally crash the server due to memory leaks. This performance problem bothers people. The performance issue seems to be related to the server. We design streams on the client and submit them to the server, which generates a large SQL statement. There are two potential bottlenecks: one in the server and another in data extraction. I'm unsure about the exact mechanics of data splitting when fetching from the database. When streams become larger, performance bottlenecks may occur in the IBM SPSS Modeler server or the database. Sometimes the server crashes and needs to be restarted to release memory on both sides. I'm not sure exactly where the problem is caused, as I focus on stream design rather than server issues. The problem could be on the IBM SPSS Modeler server and database.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Traceability is vital since I manage many cohorts, and collaboration is key as I have multiple engineers substituting for one another."
"Dataiku is highly regarded as it is a leader in the Gartner ranking."
"If many teams are collaborating and sharing Jupyter notebooks, it's very useful."
"I like the interface, which is probably my favorite part of the solution. It is really user-friendly for an IT person."
"Cloud-based process run helps in not keeping the systems on while processes are running."
"Data Science Studio's data science model is very useful."
"I rate the overall product as eight out of ten."
"The solution is quite stable."
"Very good data aggregation."
"Our business units' capabilities with SPSS Modeler is high. They no longer waste time on modeling and algorithms, meaning they are not coding any more. For example, segmentation projects now take one to three months, rather than six months to a year, as before."
"In the solution, I like the virtualization of data flow since it shows what goes where, which is mostly the strength of the tool."
"We have a local representative who specializes in SPSS. He will help us do the PoC."
"It is pretty scalable."
"It’s definitely scalable, it’s all on the same platform, it’s well integrated. I think the integration is important in terms of scalablility because essentially, having the entire suite helps a lot to scale it"
"You take two quarters and compare them and this tool is ideal because it gives you a lot of visibility on the before and after."
"​It works fine. I have not had any stability issues; it is always up.​"
 

Cons

"There were stability issues: 1) SQL operations, such as partitioning, had bugs and showed wrong results. 2) Due to server downtime, scheduled processes used to fail. 3) Access to project folders was compromised (privacy issue) with wrong people getting access to confidential project folders."
"There is room for improvement in terms of allowing for more code-based features."
"I find that it is a little slow during use. It takes more time than I would expect for operations to complete."
"One area for improvement is the need for more capabilities similar to those provided by NVIDIA for parallel machine learning training. We still encounter some integration issues."
"In the next release of this solution, I would like to see deep learning better integrated into the tool and not simply an extension or plugin."
"I think it would help if Data Science Studio added some more features and improved the data model."
"The license is very expensive."
"The license is very expensive. It would be great to have an intermediate license for basic treatments that do not require extensive experience."
"Expensive to deploy solutions. You need to buy an extra deployment unit."
"Time Series or forecasting needs to be easier. It is a very important feature, and it should be made easier and more automated to use. For instance, for logistic regression, binary or multinomial is used automatically based on the type of the target variable. I wish they can make Time Series easier to use in a similar way."
"The biggest issue with the visual modeling capability is that we can't extract the SQL code under the hood."
"I would like see more programming languages added, like MATLAB. That would be better."
"The forecasting could be a bit easier."
"The product does not have a search function for tags."
"I would not rate the technical support very well. The technicians have accents. When you do find someone, it is very hard to get somebody able to answer the technical questions."
"Customer support is hard to contact."
 

Pricing and Cost Advice

"The annual licensing fees are approximately €20 ($22 USD) per key for the basic version and €40 ($44 USD) per key for the version with everything."
"Pricing is pretty steep. Dataiku is also not that cheap."
"Its price is okay for a company, but for personal use, it is considered somewhat expensive."
"I am using the free version of IBM SPSS Modeler, it is the educational edition version."
"It is an expensive product."
"The scalability was kind of limited by our ability to get other people licenses, and that was usually more of a financial constraint. It's expensive, but it's a good tool."
"Having in mind all four tools from Garner’s top quadrant, the pricing of this tool is competitive and it reflects the quality that it offers."
"It is a huge increase to time savings."
"The government has funds and a budget, it's hard to say if it's expensive or cheap. In Canada, they have a yearly budget. They used to encourage people to use the modeler for development. If ten users use the server with ten licenses, it runs faster. But if forty users use the same appliance, everything slows down. People then think it's not easy to do things and prefer using remote tools like Python to extract data from the database. It's not about being expensive or cheap, but about people's knowledge and experience in how to do the work."
"When you are close to end of quarter, IBM and its partners can get you 60% to 70% discounts, so literally wait for the last day of the quarter for the best prices. You may feel like you are getting robbed if you can't receive a good discount."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
867,676 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Manufacturing Company
10%
Computer Software Company
9%
Energy/Utilities Company
6%
Financial Services Firm
12%
Educational Organization
11%
Government
10%
University
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business4
Midsize Enterprise1
Large Enterprise7
By reviewers
Company SizeCount
Small Business9
Midsize Enterprise4
Large Enterprise32
 

Questions from the Community

What is your experience regarding pricing and costs for Dataiku Data Science Studio?
I find the pricing of Dataiku quite affordable for our customers, as they are usually large companies. However, it is a pricey solution and I primarily recommend it to bigger companies.
What needs improvement with Dataiku Data Science Studio?
There is room for improvement in terms of allowing for more code-based features. I would love for Dataiku to allow more flexibility with code-based components and provide the possibility to extend ...
What is your primary use case for Dataiku Data Science Studio?
My company sells licenses for both Dataiku and Alteryx, and we have clients who use them. I engage with several companies in telecommunications, retail, and energy to assess how our clients are uti...
What do you like most about IBM SPSS Modeler?
Compared to other tools, the product works much easier to analyze data without coding.
What is your experience regarding pricing and costs for IBM SPSS Modeler?
The government has funds and a budget, it's hard to say if it's expensive or cheap. In Canada, they have a yearly budget. They used to encourage people to use the modeler for development. If ten us...
What needs improvement with IBM SPSS Modeler?
The customer comes to you and says they want to deploy it and make a production out of this, which is very difficult and expensive with IBM SPSS Modeler. With MATLAB, there is no problem. I have a ...
 

Comparisons

 

Also Known As

Dataiku DSS
SPSS Modeler
 

Overview

 

Sample Customers

BGL BNP Paribas, Dentsu Aegis, Link Mobility Group, AramisAuto
Reisebªro Idealtours GmbH, MedeAnalytics, Afni, Israel Electric Corporation, Nedbank Ltd., DigitalGlobe, Vodafone Hungary, Aegon Hungary, Bureau Veritas, Brammer Group, Florida Department of Juvenile Justice, InSites Consulting, Fortis Turkey
Find out what your peers are saying about Dataiku vs. IBM SPSS Modeler and other solutions. Updated: July 2025.
867,676 professionals have used our research since 2012.