Try our new research platform with insights from 80,000+ expert users

Google Cloud Datalab vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Cloud Datalab
Ranking in Data Science Platforms
16th
Average Rating
7.8
Reviews Sentiment
6.4
Number of Reviews
6
Ranking in other categories
Data Visualization (19th)
Microsoft Azure Machine Lea...
Ranking in Data Science Platforms
5th
Average Rating
7.6
Reviews Sentiment
7.0
Number of Reviews
60
Ranking in other categories
AI Development Platforms (3rd)
 

Mindshare comparison

As of February 2025, in the Data Science Platforms category, the mindshare of Google Cloud Datalab is 0.9%, down from 1.3% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 5.5%, down from 10.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Nilesh Gode - PeerSpot reviewer
Easy to setup, stable and easy to design data pipelines
The scalability is average. We have not faced any issues with scalability. There are more than 500 end users using this solution in our company. It is an integral part of the daily operations. The usage pattern is not a one-time thing; employees regularly access and utilize the application. We use it at a global level with a scattered user base. This means that users don't all use the application at the same time. So, around 300 out of 500 employees use the solution, and this usage is spread out throughout the day.
Takayuki Umehara - PeerSpot reviewer
Streamlined workflows with drag and drop convenience but needs enhancements in AI
I use Machine Learning Studio for system reselling and integration Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints. It provides a return on investment and cost savings, proving beneficial for…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The APIs are valuable."
"All of the features of this product are quite good."
"For me, it has been a stable product."
"In MLOps, when we are designing the data pipeline, the designing of the data pipeline is easy in Google Cloud."
"Google Cloud Datalab is very customizable."
"The infrastructure is highly reliable and efficient, contributing to a positive experience."
"Visualisation, and the possibility of sharing functions are key features."
"The most valuable feature of this solution is the ability to use all of the cognitive services, prebuilt from Azure."
"Split dataset, variety of algorithms, visualizing the data, and drag and drop capability are the features I appreciate most."
"It's good for citizen data scientists, but also, other people can use Python or .NET code."
"The visualizations are great. It makes it very easy to understand which model is working and why."
"The product is well organized. The thing is how we will get the models to work within our code. We have some suggestions there, but we want to gain more experience and be ready to answer that because we are currently working on this and don't have all the answers yet. The tool is well organized. What I am very happy about is the ease of deploying new resources. You can easily create your pipeline within minutes."
"The drag-and-drop interface is good."
"The drag-and-drop interface of Azure Machine Learning Studio has greatly improved my workflow."
 

Cons

"The interface should be more user-friendly."
"We have also encountered challenges during our transition period in terms of data control and segmentation. The management of each channel and data structure as it has its own unique characteristics requires very detailed and precise control. The allocation should be appropriate and the complexity increases due to the different time zones and geographic locations of our clients. The process usually involves migrating the existing database sets to gcp and ensure data integrity is maintained. This is the only challenge that we faced while navigating the integers of the solution and honestly it was an interesting and unique experience."
"Even if your application is always connected to its database, the processing can be cumbersome. It shouldn't be so complicated."
"There is room for improvement in the graphical user interface. So that the initial user would use it properly, that would be a good option."
"Connectivity challenges for end-users, particularly when loading data, environments, and libraries, need to be addressed for an enhanced user experience."
"The product must be made more user-friendly."
"Using the solution requires some specific learning which can take some time."
"Operability with R could be improved."
"n the solution, there is the concept of workspaces, and there is no means to share the computing infrastructure across those workspaces."
"As for the areas for improvement in Microsoft Azure Machine Learning Studio, I've provided feedback to Microsoft. My company is a Gold Partner of Microsoft, so I provided my feedback in another forum. Right now, it is the number of algorithms available in the designer that has to be improved, though I'm sure Microsoft does it regularly. When you take a use case approach, Microsoft has done that in a lot of places, but not on the Microsoft Azure Machine Learning Studio designer. When I say use case basis, I meant recommending a product or recommending similar products, so if Microsoft can list out use cases and give me a template, it will save me a lot of time and a lot of work because I don't have to scratch my head on which algorithm is better, and I can go with what's recommended by Microsoft. I'm sure that isn't a big task for the Microsoft team who must have seen thousands of use cases already, so out of that experience if the team can come up with a standard template, I'm sure it'll help a lot of organizations cut down on the development time, as well as going with the best industry-standard algorithms rather than experimenting with mine. What I'd like to see in the next version of Microsoft Azure Machine Learning Studio, apart from the use case template, is the improvement of the availability of libraries. Microsoft should also upgrade the Python versions because the old version of Python is still supported and it takes time for Microsoft to upgrade the support for Python. The pace of upgrading Python versions of Microsoft Azure Machine Learning Studio and making those libraries available should be sped up or increased."
"Easier customization and configuration would be beneficial."
"The data processor can pose a bit of a challenge, but the real complexity is determined by the skill of the implementation team."
"The speed of deployment should be faster, as should testing."
"It would be nice if the product offered more accessibility in general."
 

Pricing and Cost Advice

"It is affordable for us because we have a limited number of users."
"The pricing is quite reasonable, and I would give it a rating of four out of ten."
"The product is cheap."
"The product's pricing is reasonable."
"When we got our first models and were ready for the user acceptance testing, our licensing fees were between €2,500 ($2,750 USD) and €3,000 ($3,300 USD) monthly."
"I rate the solution's pricing a four on a scale of one to ten, where one is cheap, and ten is expensive."
"We pay only the Azure costs for what we use, which involves some subscription costs. But essentially, you pay for what you use. There are no extra costs in addition to the standard licensing fees."
"The solution cost is high."
"It is less expensive than one of its competitors."
"I would rate the pricing an eight out of ten, with ten being very expensive. Not very expensive, not very cheap."
"On a scale from one to ten, with ten being overpriced, I would rate the price of this solution at six."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
838,713 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
20%
Computer Software Company
12%
University
10%
Manufacturing Company
9%
Financial Services Firm
13%
Computer Software Company
11%
Manufacturing Company
9%
Healthcare Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about Google Cloud Datalab?
Google Cloud Datalab is very customizable.
What needs improvement with Google Cloud Datalab?
Access is always via URL, and unless your network is fast, it would be a little tough in India. In India, if we had a faster network, it would be easier. In a big data environment, like when forcin...
What is your primary use case for Google Cloud Datalab?
It's for our daily data processing, and there's a batch job that executes it. The process involves more than ten servers or systems. Some of them use a mobile network, some are ONTAP networks, and ...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
Pricing is considered to be top-segment and should be improved. I rate the pricing as three or four on a scale of one to ten in terms of affordability.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

Information Not Available
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Google Cloud Datalab vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: January 2025.
838,713 professionals have used our research since 2012.