Try our new research platform with insights from 80,000+ expert users

Google Cloud Datalab vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Cloud Datalab
Ranking in Data Science Platforms
16th
Average Rating
7.8
Reviews Sentiment
6.4
Number of Reviews
6
Ranking in other categories
Data Visualization (18th)
Microsoft Azure Machine Lea...
Ranking in Data Science Platforms
4th
Average Rating
7.6
Reviews Sentiment
7.0
Number of Reviews
61
Ranking in other categories
AI Development Platforms (3rd)
 

Mindshare comparison

As of April 2025, in the Data Science Platforms category, the mindshare of Google Cloud Datalab is 0.9%, down from 1.2% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 5.3%, down from 9.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Nilesh Gode - PeerSpot reviewer
Easy to setup, stable and easy to design data pipelines
The scalability is average. We have not faced any issues with scalability. There are more than 500 end users using this solution in our company. It is an integral part of the daily operations. The usage pattern is not a one-time thing; employees regularly access and utilize the application. We use it at a global level with a scattered user base. This means that users don't all use the application at the same time. So, around 300 out of 500 employees use the solution, and this usage is spread out throughout the day.
Takayuki Umehara - PeerSpot reviewer
Streamlined workflows with drag and drop convenience but needs enhancements in AI
I use Machine Learning Studio for system reselling and integration Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints. It provides a return on investment and cost savings, proving beneficial for…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Google Cloud Datalab is very customizable."
"For me, it has been a stable product."
"In MLOps, when we are designing the data pipeline, the designing of the data pipeline is easy in Google Cloud."
"The APIs are valuable."
"All of the features of this product are quite good."
"The infrastructure is highly reliable and efficient, contributing to a positive experience."
"The notebook feature allows you to write inquiries and create dashboards. These dashboards can integrate with multiple databases, such as Excel, HANA, or SQL Server."
"The solution is easy to use and has good automation capabilities in conjunction with Azure DevOps."
"Microsoft Azure Machine Learning Studio is easy to use and deploy."
"Visualisation, and the possibility of sharing functions are key features."
"Microsoft Azure Machine Learning Studio offers a hands-on experience with lots of flexibility."
"Overall, I rate Microsoft Azure Machine Learning Studio a seven out of ten."
"The drag-and-drop interface of Azure Machine Learning Studio has greatly improved my workflow."
"The solution is very easy to use, so far as our data scientists are concerned."
 

Cons

"We have also encountered challenges during our transition period in terms of data control and segmentation. The management of each channel and data structure as it has its own unique characteristics requires very detailed and precise control. The allocation should be appropriate and the complexity increases due to the different time zones and geographic locations of our clients. The process usually involves migrating the existing database sets to gcp and ensure data integrity is maintained. This is the only challenge that we faced while navigating the integers of the solution and honestly it was an interesting and unique experience."
"Even if your application is always connected to its database, the processing can be cumbersome. It shouldn't be so complicated."
"Connectivity challenges for end-users, particularly when loading data, environments, and libraries, need to be addressed for an enhanced user experience."
"The interface should be more user-friendly."
"There is room for improvement in the graphical user interface. So that the initial user would use it properly, that would be a good option."
"The product must be made more user-friendly."
"I would like to see modules to handle Deep Learning frameworks."
"Integration with social media would be a valuable enhancement."
"The speed of deployment should be faster, as should testing."
"A problem that I encountered was that I had to pay for the model that I wanted to deploy and use on Azure Machine Learning, but there wasn't any option that that model can be used in the designer."
"Easier customization and configuration would be beneficial."
"The AutoML feature is very basic and they should improve it by using a more robust algorithm."
"The high price of the product is an area of concern where improvements are required."
"Enable creating ensemble models easier, adding more machine learning algorithms."
 

Pricing and Cost Advice

"The product is cheap."
"The pricing is quite reasonable, and I would give it a rating of four out of ten."
"It is affordable for us because we have a limited number of users."
"The pricing for Microsoft products can be complex due to changes and being cloud-based, so it's not straightforward. I've been familiar with it for years, but sometimes details about product licenses and distribution can be unclear. For Microsoft Azure Machine Learning Studio specifically, I would rate the price a six out of ten."
"I rate the product price as a nine on a scale of one to ten, where ten means it is very expensive."
"In terms of pricing, for any cloud solution, you should know the tricks of the trade and how to use it, otherwise, you'll end up paying a lot of money irrespective of the cloud provider, so at least for Microsoft Azure Machine Learning Studio pricing versus AWS, I would rate it three out of five, with one being the most expensive, and five being the cheapest. It could be cheaper, but you also have to be careful when choosing the plans, for example, consider the architecture and a lot of other factors before choosing your plan, if you don't want to end up paying more. If your cloud provider has an optimizer that seems to be available in every provider, that would keep alerting you in terms of resources not being used as much, then that would help you with budgeting."
"There is a lack of certainty with the solution's pricing."
"The platform's price is low."
"We pay only the Azure costs for what we use, which involves some subscription costs. But essentially, you pay for what you use. There are no extra costs in addition to the standard licensing fees."
"ML Studio's pricing becomes a numbers game."
"My team didn't deal with the licensing for Microsoft Azure Machine Learning Studio, so I'm unable to comment on pricing, but the money that was spent on the tool was worth it."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
842,767 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
20%
Computer Software Company
12%
University
10%
Manufacturing Company
7%
Financial Services Firm
13%
Computer Software Company
11%
Manufacturing Company
10%
Healthcare Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about Google Cloud Datalab?
Google Cloud Datalab is very customizable.
What needs improvement with Google Cloud Datalab?
Access is always via URL, and unless your network is fast, it would be a little tough in India. In India, if we had a faster network, it would be easier. In a big data environment, like when forcin...
What is your primary use case for Google Cloud Datalab?
It's for our daily data processing, and there's a batch job that executes it. The process involves more than ten servers or systems. Some of them use a mobile network, some are ONTAP networks, and ...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
Pricing is considered to be top-segment and should be improved. I rate the pricing as three or four on a scale of one to ten in terms of affordability.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

Information Not Available
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Google Cloud Datalab vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: March 2025.
842,767 professionals have used our research since 2012.