Try our new research platform with insights from 80,000+ expert users

Google Cloud Datalab vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Cloud Datalab
Ranking in Data Science Platforms
16th
Average Rating
7.8
Reviews Sentiment
6.4
Number of Reviews
6
Ranking in other categories
Data Visualization (19th)
Microsoft Azure Machine Lea...
Ranking in Data Science Platforms
4th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
62
Ranking in other categories
AI Development Platforms (4th)
 

Mindshare comparison

As of July 2025, in the Data Science Platforms category, the mindshare of Google Cloud Datalab is 1.0%, down from 1.0% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 5.1%, down from 7.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Nilesh Gode - PeerSpot reviewer
Easy to setup, stable and easy to design data pipelines
The scalability is average. We have not faced any issues with scalability. There are more than 500 end users using this solution in our company. It is an integral part of the daily operations. The usage pattern is not a one-time thing; employees regularly access and utilize the application. We use it at a global level with a scattered user base. This means that users don't all use the application at the same time. So, around 300 out of 500 employees use the solution, and this usage is spread out throughout the day.
Takayuki Umehara - PeerSpot reviewer
Streamlined workflows with drag and drop convenience but needs enhancements in AI
I use Machine Learning Studio for system reselling and integration Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints. It provides a return on investment and cost savings, proving beneficial for…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Google Cloud Datalab is very customizable."
"All of the features of this product are quite good."
"For me, it has been a stable product."
"The infrastructure is highly reliable and efficient, contributing to a positive experience."
"The APIs are valuable."
"In MLOps, when we are designing the data pipeline, the designing of the data pipeline is easy in Google Cloud."
"The visualizations are great. It makes it very easy to understand which model is working and why."
"It helps in building customized models, which are easy for clients to use​.​​"
"The most valuable feature is data normalization."
"The most valuable feature of the solution is the availability of ChatGPT in the solution."
"The solution's most beneficial feature is its integration with Azure."
"I like being able to compare results across different training runs. The hyperparameter tuning function is a valuable feature because it provides the ability to run multiple experiments at the same time and compare results."
"The product supports open-source tools."
"​It has helped in reducing the time involved for coding using R and/or Python."
 

Cons

"Connectivity challenges for end-users, particularly when loading data, environments, and libraries, need to be addressed for an enhanced user experience."
"The interface should be more user-friendly."
"Even if your application is always connected to its database, the processing can be cumbersome. It shouldn't be so complicated."
"We have also encountered challenges during our transition period in terms of data control and segmentation. The management of each channel and data structure as it has its own unique characteristics requires very detailed and precise control. The allocation should be appropriate and the complexity increases due to the different time zones and geographic locations of our clients. The process usually involves migrating the existing database sets to gcp and ensure data integrity is maintained. This is the only challenge that we faced while navigating the integers of the solution and honestly it was an interesting and unique experience."
"The product must be made more user-friendly."
"There is room for improvement in the graphical user interface. So that the initial user would use it properly, that would be a good option."
"One problem I experience is that switching between multiple accounts can be difficult. I don't think there are any major issues. Mostly, the biggest challenge is to identify business solutions to this. The tool should keep on updating new algorithms and not stay static."
"Easier customization and configuration would be beneficial."
"It would be great if the solution integrated Microsoft Copilot, its AI helper."
"Stability-wise, you may face certain problems when you fail to refresh the data in the solution."
"The initial setup of Microsoft Azure Machine Learning Studio was rigorous for someone new like me, but mastering it made things simpler."
"The pricing policy should be improved."
"I would like to see modules to handle Deep Learning frameworks."
"The speed of deployment should be faster, as should testing."
 

Pricing and Cost Advice

"The pricing is quite reasonable, and I would give it a rating of four out of ten."
"The product is cheap."
"It is affordable for us because we have a limited number of users."
"The licensing cost is very cheap. It's less than $50 a month."
"In terms of pricing, for any cloud solution, you should know the tricks of the trade and how to use it, otherwise, you'll end up paying a lot of money irrespective of the cloud provider, so at least for Microsoft Azure Machine Learning Studio pricing versus AWS, I would rate it three out of five, with one being the most expensive, and five being the cheapest. It could be cheaper, but you also have to be careful when choosing the plans, for example, consider the architecture and a lot of other factors before choosing your plan, if you don't want to end up paying more. If your cloud provider has an optimizer that seems to be available in every provider, that would keep alerting you in terms of resources not being used as much, then that would help you with budgeting."
"We pay only the Azure costs for what we use, which involves some subscription costs. But essentially, you pay for what you use. There are no extra costs in addition to the standard licensing fees."
"There is a lack of certainty with the solution's pricing."
"It is less expensive than one of its competitors."
"I am paying for it following a pay-as-you-go. So, the more I use it, the more it costs."
"I used the free student license for a few months to operate the solution, but I'll have to pay for it if I want to do more now."
"The platform's price is low."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
861,524 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
24%
Computer Software Company
9%
University
8%
Manufacturing Company
6%
Financial Services Firm
13%
Computer Software Company
10%
Manufacturing Company
10%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about Google Cloud Datalab?
Google Cloud Datalab is very customizable.
What needs improvement with Google Cloud Datalab?
Access is always via URL, and unless your network is fast, it would be a little tough in India. In India, if we had a faster network, it would be easier. In a big data environment, like when forcin...
What is your primary use case for Google Cloud Datalab?
It's for our daily data processing, and there's a batch job that executes it. The process involves more than ten servers or systems. Some of them use a mobile network, some are ONTAP networks, and ...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
The pricing for Microsoft Azure Machine Learning Studio is reasonable since it's pay as you go, meaning it won't cost excessively unless specific resources are used.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

Information Not Available
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Google Cloud Datalab vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: June 2025.
861,524 professionals have used our research since 2012.