Try our new research platform with insights from 80,000+ expert users

Google Cloud Datalab vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Cloud Datalab
Ranking in Data Science Platforms
19th
Average Rating
7.8
Reviews Sentiment
6.4
Number of Reviews
6
Ranking in other categories
Data Visualization (18th)
Microsoft Azure Machine Lea...
Ranking in Data Science Platforms
4th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
62
Ranking in other categories
AI Development Platforms (5th)
 

Mindshare comparison

As of October 2025, in the Data Science Platforms category, the mindshare of Google Cloud Datalab is 1.1%, up from 1.0% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 4.9%, down from 6.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
Microsoft Azure Machine Learning Studio4.9%
Google Cloud Datalab1.1%
Other94.0%
Data Science Platforms
 

Featured Reviews

Nilesh Gode - PeerSpot reviewer
Easy to setup, stable and easy to design data pipelines
The scalability is average. We have not faced any issues with scalability. There are more than 500 end users using this solution in our company. It is an integral part of the daily operations. The usage pattern is not a one-time thing; employees regularly access and utilize the application. We use it at a global level with a scattered user base. This means that users don't all use the application at the same time. So, around 300 out of 500 employees use the solution, and this usage is spread out throughout the day.
Takayuki Umehara - PeerSpot reviewer
Streamlined workflows with drag and drop convenience but needs enhancements in AI
I use Machine Learning Studio for system reselling and integration Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints. It provides a return on investment and cost savings, proving beneficial for…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"In MLOps, when we are designing the data pipeline, the designing of the data pipeline is easy in Google Cloud."
"All of the features of this product are quite good."
"For me, it has been a stable product."
"Google Cloud Datalab is very customizable."
"The APIs are valuable."
"The infrastructure is highly reliable and efficient, contributing to a positive experience."
"It's a great option if you are fairly new and don't want to write too much code."
"One of the notable advantages is that it offers both a visual designer, which is user-friendly, and an advanced coding option."
"The notebook feature allows you to write inquiries and create dashboards. These dashboards can integrate with multiple databases, such as Excel, HANA, or SQL Server."
"I like that it's totally easy to use. They have an AutoML solution, and their machine learning model is highly accurate. They also have a feature that can explain the machine learning model. This makes it easy for me to understand that model."
"I've developed a couple of chatbots using Azure OpenAI, leveraging its documented solutions and APIs. The tools available make it straightforward to implement machine learning solutions. However, there are challenges, such as hallucinations and security issues, but overall, it works well and is quite fast, allowing for the development of interesting projects."
"The most valuable feature is its compatibility with Tensorflow."
"Microsoft Azure Machine Learning Studio is easy to use and deploy."
"The graphical nature of the output makes it very easy to create PowerPoint reports as well."
 

Cons

"There is room for improvement in the graphical user interface. So that the initial user would use it properly, that would be a good option."
"The interface should be more user-friendly."
"Even if your application is always connected to its database, the processing can be cumbersome. It shouldn't be so complicated."
"The product must be made more user-friendly."
"Connectivity challenges for end-users, particularly when loading data, environments, and libraries, need to be addressed for an enhanced user experience."
"We have also encountered challenges during our transition period in terms of data control and segmentation. The management of each channel and data structure as it has its own unique characteristics requires very detailed and precise control. The allocation should be appropriate and the complexity increases due to the different time zones and geographic locations of our clients. The process usually involves migrating the existing database sets to gcp and ensure data integrity is maintained. This is the only challenge that we faced while navigating the integers of the solution and honestly it was an interesting and unique experience."
"I rate the support from Microsoft as five out of ten. It could be improved."
"The product must improve its documentation."
"The price could be improved."
"Machine Learning Studio is more dependent on legacy Machine Learning algorithms. It would be beneficial for them to incorporate more services required for LLMs or LLM evaluation."
"Overall, the icons in the solution could be improved to provide better guidance to users. Additionally, the setup process for the solution could be made easier."
"There's room for improvement in terms of binding the integration with Azure DevOps."
"The pricing policy should be improved."
"When you use different Microsoft tools, there are different pricing metrics. It doesn't make sense. The pricing metrics are quire difficult to understand and should be either clarified or simplified. It would help us sell the solution to customers."
 

Pricing and Cost Advice

"The product is cheap."
"It is affordable for us because we have a limited number of users."
"The pricing is quite reasonable, and I would give it a rating of four out of ten."
"I am paying for it following a pay-as-you-go. So, the more I use it, the more it costs."
"There is a lack of certainty with the solution's pricing."
"There is a license required for this solution."
"In terms of pricing, for any cloud solution, you should know the tricks of the trade and how to use it, otherwise, you'll end up paying a lot of money irrespective of the cloud provider, so at least for Microsoft Azure Machine Learning Studio pricing versus AWS, I would rate it three out of five, with one being the most expensive, and five being the cheapest. It could be cheaper, but you also have to be careful when choosing the plans, for example, consider the architecture and a lot of other factors before choosing your plan, if you don't want to end up paying more. If your cloud provider has an optimizer that seems to be available in every provider, that would keep alerting you in terms of resources not being used as much, then that would help you with budgeting."
"We pay only the Azure costs for what we use, which involves some subscription costs. But essentially, you pay for what you use. There are no extra costs in addition to the standard licensing fees."
"I rate the solution's pricing a four on a scale of one to ten, where one is cheap, and ten is expensive."
"The solution operates on a pay-per-use model."
"It is less expensive than one of its competitors."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
870,623 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
28%
University
8%
Computer Software Company
8%
Government
8%
Financial Services Firm
11%
Manufacturing Company
9%
Computer Software Company
9%
Performing Arts
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
By reviewers
Company SizeCount
Small Business23
Midsize Enterprise6
Large Enterprise30
 

Questions from the Community

What do you like most about Google Cloud Datalab?
Google Cloud Datalab is very customizable.
What needs improvement with Google Cloud Datalab?
Access is always via URL, and unless your network is fast, it would be a little tough in India. In India, if we had a faster network, it would be easier. In a big data environment, like when forcin...
What is your primary use case for Google Cloud Datalab?
It's for our daily data processing, and there's a batch job that executes it. The process involves more than ten servers or systems. Some of them use a mobile network, some are ONTAP networks, and ...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
The pricing for Microsoft Azure Machine Learning Studio is reasonable since it's pay as you go, meaning it won't cost excessively unless specific resources are used.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

Information Not Available
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Google Cloud Datalab vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: September 2025.
870,623 professionals have used our research since 2012.