Try our new research platform with insights from 80,000+ expert users

Cloudera Data Science Workbench vs Google Cloud Datalab comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Cloudera Data Science Workb...
Ranking in Data Science Platforms
22nd
Average Rating
7.0
Reviews Sentiment
6.9
Number of Reviews
2
Ranking in other categories
No ranking in other categories
Google Cloud Datalab
Ranking in Data Science Platforms
19th
Average Rating
7.8
Reviews Sentiment
6.4
Number of Reviews
6
Ranking in other categories
Data Visualization (17th)
 

Mindshare comparison

As of January 2026, in the Data Science Platforms category, the mindshare of Cloudera Data Science Workbench is 1.6%, up from 1.4% compared to the previous year. The mindshare of Google Cloud Datalab is 1.4%, up from 1.0% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
Google Cloud Datalab1.4%
Cloudera Data Science Workbench1.6%
Other97.0%
Data Science Platforms
 

Featured Reviews

Ismail Peer - PeerSpot reviewer
Program Management Lead Advisor at Unionbank Philippines
Useful for data science modeling but improvement is needed in MLOps and pricing
If you don't configure CDSW well, then it might be not useful for you. Deploying the tool can vary in complexity, but most of the time, it's relatively simple and straightforward. Triggering a job from data to production is easy, as the platform automates the deployment process. However, ensuring optimal resource allocation is essential for smooth operations.
LJ
System Architect at UST Global España
dashboards are good and data visualization is more meaningful for the end-user
Access is always via URL, and unless your network is fast, it would be a little tough in India. In India, if we had a faster network, it would be easier. In a big data environment, like when forcing your database with over a billion records, it can be tough for the end-user to manage the data. You need to have a single entity system in each environment. It's not because of GCP, but it would be great to have options like MongoDB or other similar tools in GCP. Then, we wouldn't always need to connect to the cloud and execute SQL queries. Even if your application is always connected to its database, the processing can be cumbersome. It shouldn't be so complicated. Once the data is collected, it should be easily sorted.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"I appreciate CDSW's ability to logically segregate environments, such as data, DR, and production, ensuring they don't interfere with each other. The deployment of machine learning is fast and easy to manage. Its API calls are also fast."
"The Cloudera Data Science Workbench is customizable and easy to use."
"For me, it has been a stable product."
"In MLOps, when we are designing the data pipeline, the designing of the data pipeline is easy in Google Cloud."
"All of the features of this product are quite good."
"The APIs are valuable."
"Google Cloud Datalab is very customizable."
"The infrastructure is highly reliable and efficient, contributing to a positive experience."
 

Cons

"Running this solution requires a minimum of 12GB to 16GB of RAM."
"The tool's MLOps is not good. It's pricing also needs to improve."
"Even if your application is always connected to its database, the processing can be cumbersome. It shouldn't be so complicated."
"There is room for improvement in the graphical user interface. So that the initial user would use it properly, that would be a good option."
"We have also encountered challenges during our transition period in terms of data control and segmentation. The management of each channel and data structure as it has its own unique characteristics requires very detailed and precise control. The allocation should be appropriate and the complexity increases due to the different time zones and geographic locations of our clients. The process usually involves migrating the existing database sets to gcp and ensure data integrity is maintained. This is the only challenge that we faced while navigating the integers of the solution and honestly it was an interesting and unique experience."
"Connectivity challenges for end-users, particularly when loading data, environments, and libraries, need to be addressed for an enhanced user experience."
"The interface should be more user-friendly."
"The product must be made more user-friendly."
 

Pricing and Cost Advice

"The product is expensive."
"The product is cheap."
"It is affordable for us because we have a limited number of users."
"The pricing is quite reasonable, and I would give it a rating of four out of ten."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
879,768 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
38%
Manufacturing Company
8%
Healthcare Company
7%
Computer Software Company
5%
Financial Services Firm
25%
Computer Software Company
10%
University
8%
Government
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
No data available
 

Questions from the Community

What do you like most about Cloudera Data Science Workbench?
I appreciate CDSW's ability to logically segregate environments, such as data, DR, and production, ensuring they don't interfere with each other. The deployment of machine learning is fast and easy...
What needs improvement with Cloudera Data Science Workbench?
The tool's MLOps is not good. It's pricing also needs to improve.
What is your primary use case for Cloudera Data Science Workbench?
We have different use cases. Our banking use case uses machine learning to identify customer life events and recommend the best-suited card products. These machine-learning models are deployed in o...
What do you like most about Google Cloud Datalab?
Google Cloud Datalab is very customizable.
What needs improvement with Google Cloud Datalab?
Access is always via URL, and unless your network is fast, it would be a little tough in India. In India, if we had a faster network, it would be easier. In a big data environment, like when forcin...
What is your primary use case for Google Cloud Datalab?
It's for our daily data processing, and there's a batch job that executes it. The process involves more than ten servers or systems. Some of them use a mobile network, some are ONTAP networks, and ...
 

Also Known As

CDSW
No data available
 

Overview

 

Sample Customers

IQVIA, Rush University Medical Center, Western Union
Information Not Available
Find out what your peers are saying about Cloudera Data Science Workbench vs. Google Cloud Datalab and other solutions. Updated: December 2025.
879,768 professionals have used our research since 2012.