Try our new research platform with insights from 80,000+ expert users

Google Vertex AI vs PyTorch comparison

 

Comparison Buyer's Guide

Executive Summary
 

Categories and Ranking

Google Vertex AI
Ranking in AI Development Platforms
3rd
Average Rating
8.4
Number of Reviews
10
Ranking in other categories
AI Infrastructure (1st)
PyTorch
Ranking in AI Development Platforms
8th
Average Rating
8.6
Reviews Sentiment
6.4
Number of Reviews
10
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of November 2024, in the AI Development Platforms category, the mindshare of Google Vertex AI is 23.8%, up from 15.9% compared to the previous year. The mindshare of PyTorch is 1.5%, down from 2.5% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

Serge Dahdouh - PeerSpot reviewer
A user-friendly platform that automatizes machine learning techniques with minimal effort
We work with clients who request the implementation of a certain document into a chatbot. Because of the limited knowledge of AI, our task is to link that file to the ML and provide a platform that can work as a customer service. We previously used LangChain Phython, but now it is done through Vertex AI.
Arucy Lionel - PeerSpot reviewer
Offers good backward compatible and simple to use
One of the things I really like about PyTorch is that it doesn't break with every update or deletion. That's why I switched from TensorFlow to PyTorch. I can still run the code I wrote three years ago in PyTorch on the latest version. It's very backward compatible, and it's also very simple to use. It's not overly technical, and the flow is pretty intuitive. And now that PyTorch is gaining credibility in the research space, it's becoming easier to find examples of papers that use PyTorch. This is an advantage for someone who uses PyTorch primarily.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The monitoring feature is a true life-saver for data scientists. I give it a ten out of ten."
"The most valuable feature we've found is the model garden, which allows us to deploy and use various models through the provided endpoints easily."
"The most valuable features of the solution are that it is quite flexible, and some of the services are almost low-code, with no-code services, so it gives agents flexibility to build the use cases according to the operational needs."
"Vertex AI possesses multiple libraries, so it eliminates the need for extensive coding."
"Google Vertex AI is an out-of-the-box and very easy-to-use solution."
"We extensively utilize Google Cloud's Vertex AI platform for our machine learning workflows. Specifically, we leverage the IO branch for EDA data in Suresh Live Virtual, employing Forte IT for training machine learning models. The AI model registry in Vertex AI is crucial for cataloging and managing various versions of the models we develop. When it comes to deploying models, we rely on Google Cloud's AI Prediction service, seamlessly integrating it into our workflow for real-time predictions or streaming. For monitoring and tracking the outcomes of model development, we employ Vertex AI Monitoring, ensuring a comprehensive understanding of the model's performance and results. This integrated approach within Vertex AI provides a unified platform for managing, deploying, and monitoring machine learning models efficiently."
"The integration of AutoML features streamlines our machine-learning workflows."
"Vertex comes with inbuilt integration with GCP for data storage."
"For me, the product's initial setup phase is easy...For beginners, it is fairly easy to learn."
"The tool is very user-friendly."
"The product's initial setup phase is easy."
"It’s reliable, secure and user-friendly. It allows you to develop any AIML project efficiently. PySearch is the best option for developing any project in the AIML domain. The product is easy to install."
"Its interface is the most valuable. The ability to have an interface to train machine learning models and construct them with the high-level interface, without excess busting and reconstructing the same technical elements, is very useful."
"yTorch is gaining credibility in the research space, it's becoming easier to find examples of papers that use PyTorch. This is an advantage for someone who uses PyTorch primarily."
"The framework of the solution is valuable."
"We use PyTorch libraries, which are working well. It's very easy."
 

Cons

"I think the technical documentation is not readily available in the tool."
"It would be beneficial to have certain features included in the future, such as image generators and text-to-speech solutions."
"I believe that Vertex AI is a robust platform, but its effectiveness depends significantly on the domain knowledge of the developer using it. While Vertex AI does offer support through the console UI in the Google Cloud environment, it is better suited for technical members who have a deeper understanding of machine learning concepts. The platform may be challenging for business process developers (BPDUs) who lack extensive technical knowledge, as it involves intricate customization and handling numerous parameters. Effectively utilizing Vertex AI requires not only familiarity with machine learning frameworks like TensorFlow or PyTorch but also a proficiency in Python programming. The complexity of these requirements might pose challenges for less technically oriented users, making it crucial to have a solid foundation in both machine learning principles and Python coding to extract the full value from Vertex AI. It would be beneficial to have a streamlined process where we can leverage the capabilities of Vertex AI directly through the BigQuery UI. This could involve functionalities such as creating machine learning models within the BigQuery UI, providing a more user-friendly and integrated experience. This would allow users to access and analyze data from BigQuery while simultaneously utilizing Vertex AI to build machine learning models, fostering a more cohesive and efficient workflow."
"I've noticed that using chat activity often presents a broader range of options and insights for a well-constructed question. Improving the knowledge base could be a key aspect for enhancement—expanding the information sources to enhance the generation process."
"The tool's documentation is not good. It is hard."
"Both major systems, Azure and Google, are not yet stabilized, especially their customer support."
"Google Vertex AI is good in machine learning and AI, but it lacks optimization."
"I'm not sure if I have suggestions for improvement."
"I've had issues with stability when I use a lot of data and try out different combinations of modeling techniques."
"There is not enough documentation about some methods and parameters. It is sometimes difficult to find information."
"The product has breakdowns when we change the versions a lot."
"I would like a model to be available. I think Google recently released a new version of EfficientNet. It's a really good classifier, and a PyTorch implementation would be nice."
"On the production side of things, having more frameworks would be helpful."
"I would like to see better learning documents."
"The product has certain shortcomings in the automation of machine learning."
"We faced an issue with PyTorch due to version incompatibility. PyTorch has no latest version after v12.3."
 

Pricing and Cost Advice

"The price structure is very clear"
"The Versa AI offers attractive pricing. With this pricing structure, I can leverage various opportunities to bring value to my business. It's a positive aspect worth considering."
"The solution's pricing is moderate."
"I think almost every tool offers a decent discount. In terms of credits or other stuff, every cloud provider provides a good number of incentives to onboard new clients."
"It is free."
"It is free."
"The solution is affordable."
"PyTorch is open source."
"PyTorch is an open-source solution."
"PyTorch is open-sourced."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
816,406 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
13%
Computer Software Company
13%
Manufacturing Company
9%
Retailer
7%
Manufacturing Company
30%
Computer Software Company
11%
Healthcare Company
8%
University
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Google Vertex AI?
We extensively utilize Google Cloud's Vertex AI platform for our machine learning workflows. Specifically, we leverage the IO branch for EDA data in Suresh Live Virtual, employing Forte IT for trai...
What is your experience regarding pricing and costs for Google Vertex AI?
Google Vertex AI is relatively expensive, rating it six for pricing. The pricing model could be more flexible.
What needs improvement with Google Vertex AI?
Both major systems, Azure and Google, are not yet stabilized, especially their customer support. It is essential to have a robust customer support system to get quick resolutions as they're frequen...
What needs improvement with PyTorch?
We faced an issue with PyTorch due to version incompatibility. PyTorch has no latest version after v12.3. We also faced a few version compatibility issues with CUDA drivers.
 

Comparisons

 

Learn More

Video not available
 

Overview

Find out what your peers are saying about Google Vertex AI vs. PyTorch and other solutions. Updated: October 2024.
816,406 professionals have used our research since 2012.