Try our new research platform with insights from 80,000+ expert users

H2O.ai vs SAS Enterprise Miner comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

H2O.ai
Ranking in Data Science Platforms
20th
Average Rating
7.6
Reviews Sentiment
7.2
Number of Reviews
8
Ranking in other categories
Model Monitoring (6th)
SAS Enterprise Miner
Ranking in Data Science Platforms
18th
Average Rating
7.6
Reviews Sentiment
6.2
Number of Reviews
13
Ranking in other categories
Data Mining (7th)
 

Mindshare comparison

As of April 2025, in the Data Science Platforms category, the mindshare of H2O.ai is 1.5%, up from 1.5% compared to the previous year. The mindshare of SAS Enterprise Miner is 0.7%, down from 0.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Kashif Yaseen - PeerSpot reviewer
Plug-and-play convenience enhances productivity but needs better multimodal support
We mostly used the solution in the domain that I'm working. We had most of the use cases around chatbots and conversational BI The solution was plug-and-play, meaning most of the components were handled by the solution itself rather than building them from scratch. This was useful for our banking…
reviewer1352853 - PeerSpot reviewer
A stable product that is easy to deploy and can be used for structured and unstructured data mining
We use the solution for predictive analytics to do structured and unstructured data mining I like the way the product visually shows the data pipeline. The product must provide better integration with cloud-native technologies. I have been using the solution for 20 years. The product is very…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"AutoML helps in hands-free initial evaluations of efficiency/accuracy of ML algorithms."
"The ease of use in connecting to our cluster machines."
"The most valuable feature of H2O.ai is that it is plug-and-play."
"It is helpful, intuitive, and easy to use. The learning curve is not too steep."
"Fast training, memory-efficient DataFrame manipulation, well-documented, easy-to-use algorithms, ability to integrate with enterprise Java apps (through POJO/MOJO) are the main reasons why we switched from Spark to H2O."
"One of the most interesting features of the product is their driverless component. The driverless component allows you to test several different algorithms along with navigating you through choosing the best algorithm."
"The most valuable features are the machine learning tools, the support for Jupyter Notebooks, and the collaboration that allows you to share it across people."
"I found the ease of use of the solution the most valuable. Additionally, other valuable features include: the user interface, power to extract data, compatibility with other technologies (specifically with PS400), and automation of several tasks."
"The most valuable feature is that you can use multiple algorithms for creating models and then you can compare the results between them."
"The most valuable feature is the decision tree creation."
"The setup is straightforward. Deployment doesn't take more than 30 minutes."
"Most of the features, especially on the data analysis tool pack, are really good. The way they do clustering and output is great. You can do fairly elaborate outputs. The results, the ensembles, all of these, are fantastic."
"The technical support is very good."
"I like the way the product visually shows the data pipeline."
"he solution is scalable."
 

Cons

"H2O.ai can improve in areas like multimodal support and prompt engineering."
"The model management features could be improved."
"On the topic of model training and model governance, this solution cannot handle ten or twelve models running at the same time."
"I would like to see more features related to deployment."
"Referring to bullet-3 as well, H2O DataFrame manipulation capabilities are too primitive."
"It needs a drag and drop GUI like KNIME, for easy access to and visibility of workflows."
"It lacks the data manipulation capabilities of R and Pandas DataFrames. We would kill for dplyr offloading H2O."
"The interpretability module has room for improvement. Also, it needs to improve its ability to integrate with other systems, like SageMaker, and the overall integration capability."
"The initial setup is challenging if doing it for the first time."
"Technical support could be improved."
"The product must provide better integration with cloud-native technologies."
"The solution is very stable, but we do have some problems with discrepancies involving SAS not matching with the latest Java versions. It's not stable in cases where SAS tries to run on a different version because SAS doesn't connect with the latest Java update. Once a month we need to restart systems from scratch."
"The visualization of the models is not very attractive, so the graphics should be improved."
"The ease of use can be improved. When you are new it seems a bit complex."
"Virtualization could be much better."
"The solution needs an easier interface for the user. The user experience isn't so easy for our clients."
 

Pricing and Cost Advice

"We have seen significant ROI where we were able to use the product in certain key projects and could automate a lot of processes. We were even able to reduce staff."
"The solution must improve its licensing models."
"The solution is expensive for an individual, but for an enterprise/institution (purchasing bulk licenses), it is not a high price for the use that will come from it."
"This solution is for large corporations because not everybody can afford it."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
845,564 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
21%
Computer Software Company
12%
Manufacturing Company
8%
Energy/Utilities Company
6%
Financial Services Firm
25%
University
12%
Educational Organization
9%
Manufacturing Company
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What needs improvement with H2O.ai?
H2O.ai can improve in areas like multimodal support and prompt engineering. They are already working on updates and changes. Although I haven't explored all the new products they've added to their ...
What is your primary use case for H2O.ai?
We mostly used the solution in the domain that I'm working. We had most of the use cases around chatbots and conversational BI.
What advice do you have for others considering H2O.ai?
It is important to address data privacy concerns and ensure you're choosing the right vendor that meets your use case demands. Also, you may leave my name, Kashif, but please keep the company name ...
What do you like most about SAS Enterprise Miner?
I like the way the product visually shows the data pipeline.
What is your experience regarding pricing and costs for SAS Enterprise Miner?
The solution must improve its licensing models. It bundles all the products into smaller products. We can only have a subset of the functionality available according to our license. I rate the pric...
What needs improvement with SAS Enterprise Miner?
The product must provide better integration with cloud-native technologies.
 

Comparisons

 

Also Known As

No data available
Enterprise Miner
 

Overview

 

Sample Customers

poder.io, Stanley Black & Decker, G5, PWC, Comcast, Cisco
Generali Hellas, Gitanjali Group, Gloucestershire Constabulary, GS Home Shopping, HealthPartners, IAG New Zealand, iJET, Invacare
Find out what your peers are saying about H2O.ai vs. SAS Enterprise Miner and other solutions. Updated: March 2025.
845,564 professionals have used our research since 2012.