What is most valuable?
In terms of what I found most valuable in Microsoft Azure Machine Learning Studio, I especially love the designer because you can just drag and drop items there and apply the logic that's already available with the designer. I love that I can use the libraries in Microsoft Azure Machine Learning Studio, so I don't have to search for the algorithms and all the relevant libraries because I can see them directly on the designer just by dragging and dropping. Though there's a bit of work during data cleansing, that's normal and can't be avoided. At least it's easy to find the relevant algorithm, apply that algorithm to the data, then get the desired output through Microsoft Azure Machine Learning Studio.
I also like the API feature of the solution which is readily available for me to expose the output to any consuming application, so that takes out a lot of headache. Otherwise, I have to have a developer who knows the API, and I have to have an API app, so all that is completely taken care of by the Microsoft Azure Machine Learning Studio designer. With the solution, I can concentrate on how to improve the data quality to get quality recommendations, so this lets me concentrate on my job rather than focusing on the regular development of APIs or the pipelines, in particular, the data pipelines pulling the data from other sources. All the data is taken care of and you can also concentrate on other required auxiliary activities rather than just concentrating on machine learning.
What needs improvement?
As for the areas for improvement in Microsoft Azure Machine Learning Studio, I've provided feedback to Microsoft. My company is a Gold Partner of Microsoft, so I provided my feedback in another forum. Right now, it is the number of algorithms available in the designer that has to be improved, though I'm sure Microsoft does it regularly.
When you take a use case approach, Microsoft has done that in a lot of places, but not on the Microsoft Azure Machine Learning Studio designer. When I say use case basis, I meant recommending a product or recommending similar products, so if Microsoft can list out use cases and give me a template, it will save me a lot of time and a lot of work because I don't have to scratch my head on which algorithm is better, and I can go with what's recommended by Microsoft.
I'm sure that isn't a big task for the Microsoft team who must have seen thousands of use cases already, so out of that experience if the team can come up with a standard template, I'm sure it'll help a lot of organizations cut down on the development time, as well as going with the best industry-standard algorithms rather than experimenting with mine.
What I'd like to see in the next version of Microsoft Azure Machine Learning Studio, apart from the use case template, is the improvement of the availability of libraries. Microsoft should also upgrade the Python versions because the old version of Python is still supported and it takes time for Microsoft to upgrade the support for Python. The pace of upgrading Python versions of Microsoft Azure Machine Learning Studio and making those libraries available should be sped up or increased.
For how long have I used the solution?
I've been working with Microsoft Azure Machine Learning Studio for nearly two years now.
What do I think about the stability of the solution?
Microsoft Azure Machine Learning Studio is a stable solution. My company is already using it in production. At least customers use the recommendations from Microsoft Azure Machine Learning Studio in production, so the solution is quite stable, at least in cases developed by my company.
What do I think about the scalability of the solution?
Microsoft Azure Machine Learning Studio is a solution that's easy to scale. It's pretty easy because it is hosted on Kubernetes, and there is an option in the portal where I can simply move my plan from standard to enterprise. The solution also has an automatic scaling option available because it is on Kubernetes, so it can scale automatically. I'm seeing that it's quite scalable. This has nothing to do with availability because it just runs in the background, and it is not customer-facing, but the output is customer-facing, so availability is a different case, but in terms of scalability, Microsoft Azure Machine Learning Studio is scalable.
How are customer service and support?
The technical support team for Microsoft Azure Machine Learning Studio was pretty good, though I had to tailor the answers to my requirement, but would rate support a four out of five. Most of the questions my company had, more or less, the support team already experienced, so the team had answers readily available which means there wasn't a need to do a lot of R&D, so getting answers from technical support didn't take a lot of time.
How was the initial setup?
In terms of setting up Microsoft Azure Machine Learning Studio, initially, when my company started, the documentation wasn't so good, but now it has improved. Provisioning the solution only takes a few clicks, so it's no big deal, but setting up the pipelines because no enterprise will have a single environment, you'll have to create multiple pre-production and end production environments, so moving my latest changes to the next environment was a bit of a challenge.
Many terminologies are now in the market such as DevSecOps, and MLOps, so that MLOps documentation was available initially, but it wasn't very explanatory, but now, there's a lot of improvement in the MLOps documentation and that will help me move and propagate my changes from one environment to another.
Microsoft has made improvements into the tutorials, especially on MLOps. Finding MLOps experts in the market was also very tough initially, so my company was trying to learn on the job and do it, so it took some thinking and time, but it's still good because you can learn on the job and do it, but you won't always have the luxury of time to learn it.
What's my experience with pricing, setup cost, and licensing?
In terms of pricing, for any cloud solution, you should know the tricks of the trade and how to use it, otherwise, you'll end up paying a lot of money irrespective of the cloud provider, so at least for Microsoft Azure Machine Learning Studio pricing versus AWS, I would rate it three out of five, with one being the most expensive, and five being the cheapest. It could be cheaper, but you also have to be careful when choosing the plans, for example, consider the architecture and a lot of other factors before choosing your plan, if you don't want to end up paying more. If your cloud provider has an optimizer that seems to be available in every provider, that would keep alerting you in terms of resources not being used as much, then that would help you with budgeting.
Which other solutions did I evaluate?
We evaluated quite a lot of options. We compared Microsoft Azure Machine Learning Studio against Google Cloud and AWS solutions, and there were several others available in the market. I'm trying to recollect the names which we compared the solution with. We did the benchmarking, but we went with Microsoft Azure Machine Learning Studio because our clients and their data were on Azure, though that doesn't necessarily make you go with the solution. After all, you can pull the data from any other cloud as well. For our use case, however, we found many of the things were readily available and the learning curve for Microsoft Azure Machine Learning Studio compared to others was better and easier. We didn't have to search for experts in the market to hire them because we could have our in-house team learn and deliver the solution on the job.
What other advice do I have?
Microsoft Azure Machine Learning Studio is a cloud-native solution. It's completely cloud-based.
My company has eight users of Microsoft Azure Machine Learning Studio.
My rating for Microsoft Azure Machine Learning Studio is seven out of ten.
Which deployment model are you using for this solution?
Public Cloud
*Disclosure: My company has a business relationship with this vendor other than being a customer: Partner