Try our new research platform with insights from 80,000+ expert users

Altair RapidMiner vs Domino Data Science Platform comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Mar 4, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Altair RapidMiner
Ranking in Data Science Platforms
7th
Average Rating
8.6
Reviews Sentiment
7.0
Number of Reviews
24
Ranking in other categories
Predictive Analytics (3rd)
Domino Data Science Platform
Ranking in Data Science Platforms
15th
Average Rating
7.6
Reviews Sentiment
6.7
Number of Reviews
2
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of April 2025, in the Data Science Platforms category, the mindshare of Altair RapidMiner is 7.7%, up from 6.5% compared to the previous year. The mindshare of Domino Data Science Platform is 2.5%, down from 2.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Laurence Moseley - PeerSpot reviewer
Offers good tutorials that make it easy to learn and use, with a powerful feature to compare machine learning algorithms
When I started using RapidMiner, I found it difficult to get it to read the metadata. I wanted to use, for example, a pivot table, and it did not have the variable or the attribute names in it. There were no values. It took a long while to figure out how to do that, although it tends to do it automatically nowadays. RapidMiner is not utterly intuitive for beginners. Sometimes people have trouble distinguishing between a file in their own file system and a repository entry, and they cannot find their data. This is an area where this solution could be improved. It would be helpful to have some tutorials on communicating with Python. I found it a bit difficult at times to figure out which particular variable, or attribute, is going where in Python. It is probably a simple thing to do but I haven't mastered it yet. I'd like them to do a video on that. There are a large number of videos that are usually well-produced, but I don't think that they have one on that. Essentially, I would like to see how to communicate from RapidMiner to Python and from Python to RapidMiner. One of the things I do a lot of is looking at questionnaires where people have used Likert-type scales. I don't recommend Likert-type scales, but if they're properly produced, which is a lot of hard work and it's not usually done, they're really powerful and you can do things like normalizing holes on the Likert scale. That's not the same as normalizing your data in RapidMiner. So, I would want to get results with these Likert scales, pass it through RapidMiner, do a normalization and pass back both the raw scores and the normalized scores and put in some rules, which will say if it's high on the raw score and on the normalized score and low on the standard deviation, then you can trust it.
AS
Accelerated machine learning model development with seamless deployment
We used Domino Data Science Platform for developing and working with machine learning models. It facilitated end-to-end development processes. Domino is based on Git, enabling collaboration similar to using Git. Each user operates on their own equivalent of a branch or fork, and once finished, they…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Altair RapidMiner is appreciated for its ease of use and the CRISP data mining model it supports, covering steps like data preparation, data understanding, and business understanding."
"RapidMiner is very easy to use."
"What I like about RapidMiner is its all-in-one nature, which allows me to prepare, extract, transform, and load data within the same tool."
"I like not having to write all solutions from code. Being able to drag and drop controls, enables me to focus on building the best model, without needing to search for syntax errors or extra libraries."
"I've been using a lot of components from the Strategic Extension and Python Extension."
"One of the most valuable features is the built-in data tuning feature. Once the model is built, we often struggle to increase its accuracy, but RapidMiner allows us to fine-tune variables. For Example, when working on a project, we can adjust the number of nodes or the depth of trees to see how accuracy changes. This flexibility lets us achieve higher accuracy compared to traditional automated machine-learning models"
"The solution is very intuitive and powerful."
"The documentation for this solution is very good, where each operator is explained with how to use it."
"The scalability of the solution is good; I'd rate it four out of five."
"The workspaces, which are like wrappers of Docker containers, made it easy to start development environments using Domino."
 

Cons

"In terms of the UI and SaaS, the user interface with KNIME is more appealing than RapidMiner."
"The visual interface could use something like the-drag-and-drop features which other products already support. Some additional features can make RapidMiner a better tool and maybe more competitive."
"If they could include video tutorials, people would find that quite helpful."
"The server product has been getting updated and continues to be better each release. When I started using RapidMiner, it was solid but not easy to set up and upgrade."
"I would like to see all users have access to all of the deep learning models, and that they can be used easily."
"I would like to see more integration capabilities."
"I think that they should make deep learning models easier."
"I would appreciate improvements in automation and customization options to further streamline processes."
"The deployment of large language models (LLMs) could be improved."
"The predictive analysis feature needs improvement."
 

Pricing and Cost Advice

"Although we don't pay licensing fees because it is being used within the university, my understanding is that the cost is between $5,000 and $10,000 USD per year."
"I used an educational license for this solution, which is available free of charge."
"I'm not fully aware of RapidMiner's price because we had licenses provided, but from my analysis, it's moderately priced, not too high or too low. It's worth the investment."
"The client only has to pay the licensing costs. There are not any maintenance or hidden costs in addition to the license."
"For the university, the cost of the solution is free for the students and teachers."
Information not available
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
847,959 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
University
11%
Computer Software Company
11%
Educational Organization
10%
Financial Services Firm
9%
Financial Services Firm
35%
Manufacturing Company
11%
Insurance Company
9%
Computer Software Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about RapidMiner?
RapidMiner is a no-code machine learning tool. I can install it on my local machine and work with smaller datasets. It can also connect to databases, allowing me to build models directly on the dat...
What is your experience regarding pricing and costs for RapidMiner?
I'm not fully aware of RapidMiner's price because we had licenses provided, but from my analysis, it's moderately priced, not too high or too low. It's worth the investment.
What needs improvement with RapidMiner?
Altair RapidMiner needs updates to its examples, particularly in business and marketing areas, and to the tool itself. The user interface should be improved. Incorporating generative AI as an AI as...
What needs improvement with Domino Data Science Platform?
The deployment of large language models (LLMs) could be improved. Currently, Domino provides a simple server that cannot handle big deployments, which is not suitable for LLMs.
What is your primary use case for Domino Data Science Platform?
We used Domino Data Science Platform for developing and working with machine learning models. It facilitated end-to-end development processes. Domino is based on Git, enabling collaboration similar...
What advice do you have for others considering Domino Data Science Platform?
It's important to have a DevOps team well-versed with cloud-native solutions to manage Domino effectively. Relying solely on data scientists might not be sufficient. I'd rate the solution eight out...
 

Also Known As

No data available
Domino Data Lab Platform
 

Interactive Demo

Demo not available
 

Overview

 

Sample Customers

PayPal, Deloitte, eBay, Cisco, Miele, Volkswagen
Allstate, GSK, AstraZeneca, Federal Reserve, US Navy, Bristol Myers Squibb, Bayer, BNP Paribas, Moodys, New York Life
Find out what your peers are saying about Altair RapidMiner vs. Domino Data Science Platform and other solutions. Updated: March 2025.
847,959 professionals have used our research since 2012.