Try our new research platform with insights from 80,000+ expert users

Cloudera Data Science Workbench vs Dataiku comparison

Sponsored
 

Comparison Buyer's Guide

Executive Summary
 

Categories and Ranking

IBM SPSS Statistics
Sponsored
Ranking in Data Science Platforms
10th
Average Rating
8.0
Number of Reviews
37
Ranking in other categories
Data Mining (3rd)
Cloudera Data Science Workb...
Ranking in Data Science Platforms
21st
Average Rating
7.0
Number of Reviews
2
Ranking in other categories
No ranking in other categories
Dataiku
Ranking in Data Science Platforms
7th
Average Rating
8.0
Number of Reviews
8
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of November 2024, in the Data Science Platforms category, the mindshare of IBM SPSS Statistics is 2.8%, up from 2.6% compared to the previous year. The mindshare of Cloudera Data Science Workbench is 1.5%, down from 1.8% compared to the previous year. The mindshare of Dataiku is 11.5%, up from 7.5% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

AbakarAhmat - PeerSpot reviewer
Sep 21, 2023
Enhancing survey analysis that provides valued insightfulness
I use it to analyze questionnaire surveys related to a product, solution, or application, such as open data services, which I provide to consumers and end-users. These surveys contain evaluation assessments, and I use SPSS to analyze the responses The most valuable feature is its robust…
Ismail Peer - PeerSpot reviewer
Feb 13, 2024
Useful for data science modeling but improvement is needed in MLOps and pricing
We have different use cases. Our banking use case uses machine learning to identify customer life events and recommend the best-suited card products. These machine-learning models are deployed in our environment, where they run on a scheduled basis. We rely on the platform for every data science…
Sabrine Bendimerad - PeerSpot reviewer
Jun 11, 2024
Saves a lot of time because I can quickly handle all the data preparation tasks and concentrate on building my machine learning algorithms
One of the main challenges was collaboration. Developers typically use GitHub to push and manage code, but integrating GitHub with Dataiku was complicated. While it was theoretically possible to use GitHub with Dataiku, in practice, it was difficult to manage our code effectively and push it from Dataiku to GitHub. Another limitation was its ability to handle different types of data. While Dataiku is powerful for working with structured data, like regular or geospatial data, it struggled with more complex data types such as text and image. In addition to the challenges with GitHub integration, the limited support for diverse data types was another feature lacking at that time.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Some of the most valuable features that we are using with some business models are machine learning algorithms, statistical models given to us by the business, and getting data from the database or text files."
"Most of the product features are good but I particularly like the linear regression analysis."
"The most valuable features mainly include factor analysis, correlation analysis, and geographic analysis."
"The learning curve to using this product is not steep. The program is appropriate for those who do not have a lot of background in programming, yet have to perform basic statistical analysis."
"It is a modeling tool with helpful automation."
"The solution has numerous valuable features. We particularly like custom tabs. It's very useful. We end up analyzing a lot of software data, so features related to custom tabs are really helpful."
"The features that I have found most valuable are the Bayesian statistics and descriptive statistics."
"The most valuable features are the solution is easy to use, training new users is not difficult, and our usage is comprehensive because the whole service is beneficial."
"The Cloudera Data Science Workbench is customizable and easy to use."
"I appreciate CDSW's ability to logically segregate environments, such as data, DR, and production, ensuring they don't interfere with each other. The deployment of machine learning is fast and easy to manage. Its API calls are also fast."
"If many teams are collaborating and sharing Jupyter notebooks, it's very useful."
"The most valuable feature is the set of visual data preparation tools."
"The solution is quite stable."
"I like the interface, which is probably my favorite part of the solution. It is really user-friendly for an IT person."
"The advantage is that you can focus on machine learning while having access to what they call 'recipes.' These recipes allow me to preprocess and prepare data without writing any code."
"Data Science Studio's data science model is very useful."
"Extremely easy to use with its GUI-based functionality and large compatibility with various data sources. Also, maintenance processes are much more automated than ever, with fewer errors."
"Cloud-based process run helps in not keeping the systems on while processes are running."
 

Cons

"The solution needs to improve forecasting using time series analysis."
"I know that SPSS is a statistical tool but it should also include a little bit of analytical behavior. You can call it augmented analysis or predictive analysis. The bottom line is it should have more graphical and analytical capabilities."
"There is a learning curve; it's not very steep, but there is one."
"IBM SPSS Statistics could improve the visual outputs where you are producing, for example, a graph for a company board of directors, or an advert."
"It could provide even more in the way of automation as there are many opportunities."
"This solution is not suitable for use with Big Data."
"It would be helpful if there was better documentation on how to properly use the solution. A beginner's guide on how to use the various programming functions within the product would be so useful to a lot of people. I found that everything was very confusing at first. Having clear documentation would help alleviate that."
"Most of the package will give you the fixed value, or the p-value, without an explanation as to whether it it significant or not. Some beginners might need not just the results, but also some explanation for them."
"The tool's MLOps is not good. It's pricing also needs to improve."
"Running this solution requires a minimum of 12GB to 16GB of RAM."
"One of the main challenges was collaboration. Developers typically use GitHub to push and manage code, but integrating GitHub with Dataiku was complicated."
"There were stability issues: 1) SQL operations, such as partitioning, had bugs and showed wrong results. 2) Due to server downtime, scheduled processes used to fail. 3) Access to project folders was compromised (privacy issue) with wrong people getting access to confidential project folders."
"The interface for the web app can be a bit difficult. It needs to have better capabilities, at least for developers who like to code. This is due to the fact that everything is enabled in a single window with different tabs. For them to actually develop and do the concurrent testing that needs to be done, it takes a bit of time. That is one improvement that I would like to see - from a web app developer perspective."
"Server up-time needs to be improved. Also, query engines like Spark and Hive need to be more stable."
"Although known for Big Data, the processing time to process 1.8 billion records was terribly slow (five days)."
"Dataiku still needs some coding, and that could be a difference where business data scientists would go for DataRobot more than Dataiku."
"In the next release of this solution, I would like to see deep learning better integrated into the tool and not simply an extension or plugin."
"The ability to have charts right from the explorer would be an improvement."
 

Pricing and Cost Advice

"If it requires lot of data processing, maybe switching to IBM SPSS Clementine would be better for the buyer."
"The price of this solution is a little bit high, which was a problem for my company."
"SPSS is an expensive piece of software because it's incredibly complex and has been refined over decades, but I would say it's fairly priced."
"The pricing of the modeler is high and can reduce the utility of the product for those who can not afford to adopt it."
"The price of IBM SPSS Statistics could improve."
"While the pricing of the product may be higher, the accompanying service and features justify the investment."
"I rate the tool's pricing a five out of ten."
"Our licence is on a yearly renewal basis. While pricing is not the primary concern in our evaluation, as products are assessed by whether they can meet our user needs and expertise, the cost can be a limiting factor in the number of licences we procure."
"The product is expensive."
"Pricing is pretty steep. Dataiku is also not that cheap."
"The annual licensing fees are approximately €20 ($22 USD) per key for the basic version and €40 ($44 USD) per key for the version with everything."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
815,597 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
17%
University
9%
Computer Software Company
9%
Manufacturing Company
8%
Financial Services Firm
34%
Manufacturing Company
11%
Healthcare Company
9%
Government
7%
Financial Services Firm
18%
Educational Organization
15%
Manufacturing Company
9%
Computer Software Company
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about IBM SPSS Statistics?
The software offers consistency across multiple research projects helping us with predictive analytics capabilities.
What is your experience regarding pricing and costs for IBM SPSS Statistics?
While the pricing of the product may be higher, the accompanying service and features justify the investment. However...
What needs improvement with IBM SPSS Statistics?
In some cases, the product takes time to load a large dataset. They could improve this particular area.
What do you like most about Cloudera Data Science Workbench?
I appreciate CDSW's ability to logically segregate environments, such as data, DR, and production, ensuring they don'...
What needs improvement with Cloudera Data Science Workbench?
The tool's MLOps is not good. It's pricing also needs to improve.
What is your primary use case for Cloudera Data Science Workbench?
We have different use cases. Our banking use case uses machine learning to identify customer life events and recommen...
What needs improvement with Dataiku Data Science Studio?
One of the main challenges was collaboration. Developers typically use GitHub to push and manage code, but integratin...
What is your primary use case for Dataiku Data Science Studio?
We use the solution for data science and machine learning.
 

Also Known As

SPSS Statistics
CDSW
Dataiku DSS
 

Learn More

Video not available
 

Overview

 

Sample Customers

LDB Group, RightShip, Tennessee Highway Patrol, Capgemini Consulting, TEAC Corporation, Ironside, nViso SA, Razorsight, Si.mobil, University Hospitals of Leicester, CROOZ Inc., GFS Fundraising Solutions, Nedbank Ltd., IDS-TILDA
IQVIA, Rush University Medical Center, Western Union
BGL BNP Paribas, Dentsu Aegis, Link Mobility Group, AramisAuto
Find out what your peers are saying about Cloudera Data Science Workbench vs. Dataiku and other solutions. Updated: October 2024.
815,597 professionals have used our research since 2012.