Try our new research platform with insights from 80,000+ expert users

Dremio vs IBM Watson Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Dremio
Ranking in Data Science Platforms
8th
Average Rating
8.6
Reviews Sentiment
7.1
Number of Reviews
8
Ranking in other categories
Cloud Data Warehouse (10th)
IBM Watson Studio
Ranking in Data Science Platforms
11th
Average Rating
8.4
Reviews Sentiment
7.1
Number of Reviews
14
Ranking in other categories
AI Development Platforms (9th)
 

Mindshare comparison

As of February 2025, in the Data Science Platforms category, the mindshare of Dremio is 4.2%, up from 2.5% compared to the previous year. The mindshare of IBM Watson Studio is 2.0%, down from 2.3% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

MikeWalker - PeerSpot reviewer
It enables you to manage changes more effectively than any other platform.
Dremio enables you to manage changes more effectively than any other data warehouse platform. There are two things that come into play. One is data lineage. If you are looking at data in Dremio, you may want to know the source and what happened to it along the way or how it may have been transformed in the data pipeline to get to the point where you're consuming it. There's another thing called data providence. They're tied together. Data providence allows you to go back and recreate the data at any particular point in time. It's extremely important for compliance and governance issues because data changes all time. How did it change? What was it three days or months ago? You may have made some decisions based on data that was three months old, so you might need to revisit those. It's essential for things like machine learning and deep learning, where you are generating AI models off data. When the model stops working or doesn't work as expected, you need to figure out why. You have to go back and adjust the datasets used to train the model. We do that through an open-source project called Nessie, which is their basis for providing data lineage and data province capabilities. It's super powerful. Arrow is another open-source project for storing data in memory and performing data query operations. Data sits on a disk in one format. If you want to do anything with data, you have to load it into your computer and put it into memory so you can work with it. Arrow provides a format in memory that enables the whole library to perform various operations on that data. Every vendor has its own way of representing data in memory. They've latched onto an industry standard and developed it so it's open. Now people can use the exact same format in memory to do operations and use the library set to perform functions on data. New developers can decide if they want to develop their own memory format or use one that's already there. Data transfer is a massive problem when you're working with large datasets, doing advanced analytics, and trying to train machine learning or deep learning models. What happens often is companies downsample their data sets to do training on models because transferring and managing data on a deep learning or machine learning platform is too much.
Abilio Duarte - PeerSpot reviewer
A highly robust and well-documented platform that simplifies the complex world of AI
The main challenge lies in visibility and ease of use. Providing training sessions can be immensely helpful in helping users navigate and understand the tool's potential. This approach would empower users to explore and make the most of the tools and technologies at their disposal. Another area where IBM could enhance its offering is by providing more visibility to end users regarding the vast potential that Watson offers.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Everyone uses Dremio in my company; some use it only for the analytics function."
"Dremio allows querying the files I have on my block storage or object storage."
"We primarily use Dremio to create a data framework and a data queue."
"Overall, you can rate it as eight out of ten."
"Dremio enables you to manage changes more effectively than any other data warehouse platform. There are two things that come into play. One is data lineage. If you are looking at data in Dremio, you may want to know the source and what happened to it along the way or how it may have been transformed in the data pipeline to get to the point where you're consuming it."
"Dremio gives you the ability to create services which do not require additional resources and sterilization."
"The most valuable feature of Dremio is it can sit on top of any other data storage, such as Amazon S3, Azure Data Factory, SGFS, or Hive. The memory competition is good. If you are running any kind of materialized view, you'd be running in memory."
"It's almost similar, yet it's better than Starburst in spinning up or connecting to the new source since it's on SaaS."
"The most important thing is that it's a multi-faceted solution. It's a kind of specialist, not a generalist. It can produce very specific information for the customer. It's totally different from Google or any search engine that produces generic information. It's specialty is that it's all on video."
"Watson Studio is the most complete tool for AI projects."
"It is a stable, reliable product."
"The solution is very easy to use."
"Stability-wise, it is a great tool."
"It has a lot of data connectors, which is extremely helpful."
"Watson Studio is the most complete tool for AI projects."
"It stands out for its substantial AI capabilities, offering a broad spectrum of features for crafting solutions that meet specific requirements."
 

Cons

"They need to have multiple connectors."
"We've faced a challenge with integrating Dremio and Databricks, specifically regarding authentication. It is not shaking hands very easily."
"There are performance issues at times due to our limited experience with Dremio, and the fact that we are running it on single nodes using a community version."
"They need to have multiple connectors. Starburst is rich in connectors, however, they are lacking Salesforce connectivity as of today."
"I cannot use the recursive common table expression (CTE) in Dremio because the support page says it's currently unsupported."
"Dremio takes a long time to execute large queries or the executing of correlated queries or nested queries. Additionally, the solution could improve if we could read data from the streaming pipelines or if it allowed us to create the ETL pipeline directly on top of it, similar to Snowflake."
"It shows errors sometimes."
"They have an automated tool for building SQL queries, so you don't need to know SQL. That interface works, but it could be more efficient in terms of the SQL generated from those things. It's going through some growing pains. There is so much value in tools like these for people with no SQL experience. Over time, Dermio will make these capabilities more accessible to users who aren't database people."
"I want IBM's technical support team to provide more specific answers to queries."
"The initial setup was complex."
"One area that could be improved is the backup and restoration of the database and the overall database configuration."
"Some of the solutions are really good solutions but they can be a little too costly for many."
"I think maybe the support is an area where it lacks."
"The main challenge lies in visibility and ease of use."
"One area that could be improved is the backup and restoration of the database and the overall database configuration."
"It's sometimes easy to get lost given the number of images the solution opens up when you click on the mouse and the amount of different tabs."
 

Pricing and Cost Advice

"Dremio is less costly competitively to Snowflake or any other tool."
"Right now the cluster costs approximately $200,000 per month and is based on the volume of data we have."
"IBM Watson Studio is a reasonably priced product"
"IBM Watson Studio is an expensive solution."
"The pricing is generally reasonable and straightforward but can vary significantly depending on the specific workloads in use."
"Watson Studio's pricing is reasonable for what you get."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
832,138 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
32%
Computer Software Company
10%
Manufacturing Company
8%
Retailer
4%
Financial Services Firm
15%
Computer Software Company
12%
Manufacturing Company
9%
University
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Dremio?
Dremio allows querying the files I have on my block storage or object storage.
What is your experience regarding pricing and costs for Dremio?
The licensing is very expensive. We need a license to scale as we are currently using the community version.
What needs improvement with Dremio?
There are performance issues at times due to our limited experience with Dremio, and the fact that we are running it on single nodes using a community version. We face certain issues when connectin...
What is your experience regarding pricing and costs for IBM Watson Studio?
The pricing of Watson Studio is justified by the benefits and power it offers.
What needs improvement with IBM Watson Studio?
One area that could be improved is the backup and restoration of the database and the overall database configuration. There were also challenges with programming the network extension in the last p...
 

Also Known As

No data available
Watson Studio, IBM Data Science Experience, Data Science Experience, DSx
 

Overview

 

Sample Customers

UBS, TransUnion, Quantium, Daimler, OVH
GroupM, Accenture, Fifth Third Bank
Find out what your peers are saying about Dremio vs. IBM Watson Studio and other solutions. Updated: January 2025.
832,138 professionals have used our research since 2012.