Find out what your peers are saying about Databricks, Knime, Amazon Web Services (AWS) and others in Data Science Platforms.
IBM SPSS Statistics is a powerful data mining solution that is designed to aid business leaders in making important business decisions. It is designed so that it can be effectively utilized by organizations across a wide range of fields. SPSS Statistics allows users to leverage machine learning algorithms so that they can mine and analyze data in the most effective way possible.
IBM SPSS Statistics Benefits
Some of the ways that organizations can benefit by choosing to deploy IBM SPSS Statistics include:
IBM SPSS Statistics Features
Reviews from Real Users
IBM SPSS Statistics is a highly effective solution that stands out when compared to many of its competitors. Two major advantages it offers are the wealth of functionalities that it provides and its high level of accessibility.
An Emeritus Professor of Health Services Research at a university writes, "The most valuable feature of IBM SPSS Statistics is all the functionality it provides. Additionally, it is simple to do the five-way analysis that you can in a multidimensional setup space. It's the multidimensional space facility that is most useful."
A Director of Systems Management & MIS Operations at a university, says, “The SPSS interface is very accessible and user-friendly. It's really easy to get information from it. I've shared it with experts and beginners, and everyone can navigate it.”
H2O is a fully open source, distributed in-memory machine learning platform with linear scalability. H2O’s supports the most widely used statistical & machine learning algorithms including gradient boosted machines, generalized linear models, deep learning and more. H2O also has an industry leading AutoML functionality that automatically runs through all the algorithms and their hyperparameters to produce a leaderboard of the best models. The H2O platform is used by over 14,000 organizations globally and is extremely popular in both the R & Python communities.
SAS Visual Analytics is a data visualization tool that is used for reporting, data exploration, and analytics. The solution enables users - even those without advanced analytical skills - to understand and examine patterns, trends, and relationships in data. SAS Visual Analytics makes it easy to create and share reports and dashboards that monitor business performance. By using the solution, users can handle, understand, and analyze their data in both past and present fields, as well as influence vital factors for future changes. SAS Visual Analytics is most suitable for larger companies with complex needs.
SAS Visual Analytics Features
SAS Visual Analytics has many valuable key features. Some of the most useful ones include:
SAS Visual Analytics Benefits
There are many benefits to implementing SAS Visual Analytics. Some of the biggest advantages the solution offers include:
Reviews from Real Users
Below are some reviews and helpful feedback written by PeerSpot users currently using the SAS Visual Analytics solution.
A Senior Manager at a consultancy says, “The solution is very stable. The scalability is good. The usability is quite good. It's quite easy to learn and to progress with SAS from an end-user perspective.
PeerSpot user Robert H., Co-owner at Hecht und Heck GmbH, comments, “What I really love about the software is that I have never struggled in implementing it for complex business requirements. It is good for highly sophisticated and specialized statistics in the areas that some people tend to call artificial intelligence. It is used for everything that involves visual presentation and analysis of highly sophisticated statistics for forecasting and other purposes.
Andrea D., Chief Technical Officer at Value Partners, explains, “The best feature is that SAS is not a single BI tool. Rather, it is part of an ecosystem of tools, such as tools that help a user to develop artificial intelligence, algorithms, and so on. SAS is an ecosystem. It's an ecosystem of products. We've found the product to be stable and reliable. The scalability is good.”
We monitor all Data Science Platforms reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.