Find out in this report how the two Search as a Service solutions compare in terms of features, pricing, service and support, easy of deployment, and ROI.
Amazon Kendra is a highly accurate and easy to use enterprise search service that’s powered by machine learning. Kendra enables developers to add search capabilities to their applications so their end users can discover information stored within the vast amount of content spread across their company. This includes data from manuals, research reports, FAQs, HR documentation, customer service guides, and is found across various systems such as file systems, web sites, Box, DropBox, Salesforce, SharePoint, relational databases, Amazon S3, and more. When you type a question, the service uses machine learning algorithms to understand the context and return the most relevant results, whether that be a precise answer or an entire document. For example, you can ask a question like "How much is the cash reward on the corporate credit card?” and Kendra will map to the relevant documents and return a specific answer like “2%”. Kendra provides sample code so that you can get started quickly and easily integrate highly accurate search into your new or existing applications.
Elasticsearch is a prominent open-source search and analytics engine known for its scalability, reliability, and straightforward management. It's a favored choice among enterprises for real-time data search, analysis, and visualization. Open-source Elasticsearch is free, offering a comprehensive feature set and scalability. It allows full control over deployments but requires managing and maintaining the infrastructure. On the other hand, Elastic Cloud provides a managed service with features like automated provisioning, high availability, security, and global reach.
Elasticsearch excels in handling time-sensitive data and complex search requirements across large datasets. Its scalability allows it to handle growing data volumes efficiently, maintaining high performance and fast response times. Integrated with Kibana, Elasticsearch enables powerful data visualization, providing real-time insights crucial for data-driven decision-making.
Elastic Cloud reduces operational overhead and improves scalability and performance, though it comes with associated costs. It is available on your preferred cloud provider — AWS, Azure, or Google Cloud. Customers who want to manage the software themselves, whether on public, private, or hybrid cloud, can download the Elastic Stack.
At its core, Elasticsearch is renowned for its full-text search capabilities, capable of performing complex queries and supporting features like fuzzy matching and auto-complete.
Peer reviews from various professionals highlight its strengths and weaknesses. Pros include its detection and correlation features, flexibility, cloud-readiness, extensibility, and efficient search capabilities. However, users have noted challenges like steep learning curves, data analysis limitations, and integration complexities. The platform is generally viewed as stable and scalable, with varying degrees of satisfaction regarding its usability and feature set.
In summary, Elasticsearch stands out for its high-speed search, scalability, and versatile analytics, making it a go-to solution for organizations managing large datasets. Its adaptability to different enterprise needs, robust community support, and continuous development keep it at the forefront of enterprise search and analytics solutions. However, potential users should be aware of its learning curve and the need for skilled personnel for optimization.
We monitor all Search as a Service reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.