Try our new research platform with insights from 80,000+ expert users

Elastic Search vs Pinecone comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Mar 5, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Elastic Search
Ranking in Vector Databases
2nd
Average Rating
8.2
Reviews Sentiment
6.5
Number of Reviews
88
Ranking in other categories
Indexing and Search (1st), Cloud Data Integration (5th), Search as a Service (1st)
Pinecone
Ranking in Vector Databases
5th
Average Rating
8.4
Reviews Sentiment
6.5
Number of Reviews
9
Ranking in other categories
AI Data Analysis (15th), AI Content Creation (4th)
 

Mindshare comparison

As of February 2026, in the Vector Databases category, the mindshare of Elastic Search is 3.9%, down from 6.4% compared to the previous year. The mindshare of Pinecone is 7.1%, down from 8.1% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Vector Databases Market Share Distribution
ProductMarket Share (%)
Elastic Search3.9%
Pinecone7.1%
Other89.0%
Vector Databases
 

Featured Reviews

Vaibhav Shukla - PeerSpot reviewer
Senior Software Engineer at Agoda
Search performance has transformed large-scale intent discovery and hybrid query handling
While Elastic Search is a good product, I see areas for improvement, particularly regarding the misconception that any amount of data can simply be dumped into Elastic Search. When creating an index, careful consideration of data massaging is essential. Elastic Search stores mappings for various data types, which must remain below a certain threshold to maintain functionality. Users need to throttle the number of fields for searching to avoid overloading the system and ensure that the design of the document is efficient for the Elastic Search index. Additionally, I suggest utilizing ILM periodically throughout the year to manage data shuffling between clusters, preventing hotspots in the distribution of requests across nodes.
Pradeep Gudipati - PeerSpot reviewer
Chief Technology Advisor at Kovaad technologies Pvt Ltd
Faced challenges with metadata filtering but have achieved reliable long-term memory for chat applications
We were looking at multiple options for a vector database, and we found Pinecone to be the easiest to integrate into our solution. Plus, it has a very generous free tier, which helps us as a startup. The best features Pinecone offers are quick setup and good indexing for us. The retrieval mechanisms are fast, and the integration with Python as with JavaScript and TypeScript libraries that Pinecone provides are very robust. Authentication is also very good. The namespaces feature allows us to break down or store data for each user separately, reducing interference and maintaining privacy as an important feature. Pinecone has positively impacted our organization by enhancing efficiency for the team, and the long-term effect has been that the chats have become much more personalized due to the memory added through a vector database. We are seeing that the trainees getting trained on the platform are more satisfied with the results or messages generated by AI.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The security portion of Elasticsearch is particularly beneficial, allowing me to view and analyze security alerts."
"It is stable."
"The solution is quite scalable and this is one of its advantages."
"Elastic Search makes handling large data volumes efficient and supports complex search operations."
"I appreciate the indexing capabilities and the speed of indexing in their product, which demonstrates how quickly logs are collected and stored."
"Implementing the main requirements regarding my support portal​."
"The stability of Elasticsearch was very high, and I would rate it a ten."
"Elastic Enterprise Search is scalable. On a scale of one to 10, with one being not scalable and 10 being very scalable, I give Elastic Enterprise Search a 10."
"Pinecone has positively impacted our organization by enhancing efficiency for the team, and the long-term effect has been that the chats have become much more personalized due to the memory added through a vector database."
"The semantic search capability is very good."
"Pinecone has positively impacted our organization by enhancing efficiency for the team, and the long-term effect has been that the chats have become much more personalized due to the memory added through a vector database."
"Pinecone's integration with AWS was seamless."
"Pinecone has positively impacted my organization by helping people in needle-in-a-haystack situations, as previously they had to grind through PDF documents, PowerPoint documents, and websites, but now with Pinecone, they can ask questions and receive references to documents along with the page numbers where that information exists, so they can use it as a reference or backtrack, especially for things such as FDA approvals where they can quote the exact page number from PDF documents, eliminating hallucination and providing real-time data that relies on an external vector database with enough guardrails to ensure it won't provide information not in the vector database, confining it to the information present in the indexes."
"The most valuable feature of Pinecone is its managed service aspect. There are many vector databases available, but Pinecone stands out in the market. It is very flexible, allowing us to input any kind of data dimensions into the platform. This makes it easy to use for both technical and non-technical users."
"We chose Pinecone because it covers most of the use cases."
"The product's setup phase was easy."
 

Cons

"Its licensing needs to be improved. They don't offer a perpetual license. They want to know how many nodes you will be using, and they ask for an annual subscription. Otherwise, they don't give you permission to use it. Our customers are generally military or police departments or customers without connection to the internet. Therefore, this model is not suitable for us. This subscription-based model is not the best for OEM vendors. Another annoying thing about Elasticsearch is its roadmap. We are developing something, and then they say, "Okay. We have removed that feature in this release," and when we are adapting to that release, they say, "Okay. We have removed that one as well." We don't know what they will remove in the next version. They are not looking for backward compatibility from the customers' perspective. They just remove a feature and say, "Okay. We've removed this one." In terms of new features, it should have an ODBC driver so that you can search and integrate this product with existing BI tools and reporting tools. Currently, you need to go for third parties, such as CData, in order to achieve this. ODBC driver is the most important feature required. Its Community Edition does not have security features. For example, you cannot authenticate with a username and password. It should have security features. They might have put it in the latest release."
"There is another solution I'm testing which has a 500 record limit when you do a search on Elastic Enterprise Search. That's the only area in which I'm not sure whether it's a limitation on our end in terms of knowledge or a technical limitation from Elastic Enterprise Search. There is another solution we are looking at that rides on Elastic Enterprise Search. And the limit is for any sort of records that you're doing or data analysis you're trying to do, you can only extract 500 records at a time. I know the open-source nature has a lot of limitations, Otherwise, Elastic Enterprise Search is a fantastic solution and I'd recommend it to anyone."
"Machine learning on search needs improvement."
"There were also some difficult times with parallel and point-in-time interfaces, so better documentation could help, particularly more example-driven content."
"The price could be better. Kibana has some limitations in terms of the tablet to view event logs. I also have a high volume of data. On the initialization part, if you chose Kibana, you'll have some limitations. Kibana was primarily proposed as a log data reviewer to build applications to the viewer log data using Kibana. Then it became a virtualization tool, but it still has limitations from a developer's point of view."
"While Elastic Search is a good product, I see areas for improvement, particularly regarding the misconception that any amount of data can simply be dumped into Elastic Search."
"The documentation regarding customization could be better."
"Elasticsearch should have simpler commands for window filtering."
"Pinecone is good as it is, but had it been on AWS infrastructure, we wouldn't experience some network lags because it's outside AWS."
"The tool does not confirm whether a file is deleted or not."
"One major issue I have noticed with Pinecone is that it does not allow me to search based on metadata."
"One major issue I have noticed with Pinecone is that it does not allow me to search based on metadata."
"For testing purposes, the product should offer support locally as it is one area where the tool has shortcomings."
"If Pinecone gave us RAG as a service, we'd be more than happy to use that."
"Onboarding could be better and smoother."
"The product fails to offer a serverless type of storage capacity."
 

Pricing and Cost Advice

"It can move from $10,000 US Dollars per year to any price based on how powerful you need the searches to be and the capacity in terms of storage and process."
"​The pricing and license model are clear: node-based model."
"The version of Elastic Enterprise Search I am using is open source which is free. The pricing model should improve for the enterprise version because it is very expensive."
"We use the free version for some logs, but not extensive use."
"The premium license is expensive."
"Elastic Search is open-source, but you need to pay for support, which is expensive."
"This is a free, open source software (FOSS) tool, which means no cost on the front-end. There are no free lunches in this world though. Technical skill to implement and support are costly on the back-end with ELK, whether you train/hire internally or go for premium services from Elastic."
"ELK has been considered as an alternative to Splunk to reduce licensing costs."
"I think Pinecone is cheaper to use than other options I've explored. However, I also remember that they offer a paid version."
"Pinecone is not cheap; it's actually quite expensive. We find that using Pinecone can raise our budget significantly. On the other hand, using open-source options is more budget-friendly."
"I have experience with the tool's free version."
"The solution is relatively cheaper than other vector DBs in the market."
report
Use our free recommendation engine to learn which Vector Databases solutions are best for your needs.
881,384 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
12%
Computer Software Company
12%
Manufacturing Company
9%
Government
6%
Computer Software Company
14%
Manufacturing Company
7%
Financial Services Firm
7%
Comms Service Provider
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business37
Midsize Enterprise10
Large Enterprise43
By reviewers
Company SizeCount
Small Business5
Midsize Enterprise2
Large Enterprise3
 

Questions from the Community

What do you like most about ELK Elasticsearch?
Logsign provides us with the capability to execute multiple queries according to our requirements. The indexing is very high, making it effective for storing and retrieving logs. The real-time anal...
What is your experience regarding pricing and costs for ELK Elasticsearch?
Elastic Search's pricing totally depends on the server. Managed services from AWS are used, and we have worked on a self-managed Elastic Search cluster. On the AWS side, it is very expensive becaus...
What needs improvement with ELK Elasticsearch?
To be honest, there is only one downside of Elastic Search that makes sense because we use a basic license, which is a free license. We do not have some features available because of the free licen...
What do you like most about Pinecone?
We chose Pinecone because it covers most of the use cases.
What needs improvement with Pinecone?
I give Pinecone a nine out of ten because I hope it provides an end-to-end agentic solution, but currently, it doesn't have those agentic capabilities, meaning I have to create a Streamlit applicat...
What is your primary use case for Pinecone?
My main use case for Pinecone is creating vector indexes for GenAI applications. A specific example of how I use Pinecone in one of my projects is utilizing a RAG pipeline where I take text from PD...
 

Comparisons

 

Also Known As

Elastic Enterprise Search, Swiftype, Elastic Cloud
No data available
 

Overview

 

Sample Customers

T-Mobile, Adobe, Booking.com, BMW, Telegraph Media Group, Cisco, Karbon, Deezer, NORBr, Labelbox, Fingerprint, Relativity, NHS Hospital, Met Office, Proximus, Go1, Mentat, Bluestone Analytics, Humanz, Hutch, Auchan, Sitecore, Linklaters, Socren, Infotrack, Pfizer, Engadget, Airbus, Grab, Vimeo, Ticketmaster, Asana, Twilio, Blizzard, Comcast, RWE and many others.
1. Airbnb 2. DoorDash 3. Instacart 4. Lyft 5. Pinterest 6. Reddit 7. Slack 8. Snapchat 9. Spotify 10. TikTok 11. Twitter 12. Uber 13. Zoom 14. Adobe 15. Amazon 16. Apple 17. Facebook 18. Google 19. IBM 20. Microsoft 21. Netflix 22. Salesforce 23. Shopify 24. Square 25. Tesla 26. TikTok 27. Twitch 28. Uber Eats 29. WhatsApp 30. Yelp 31. Zillow 32. Zynga
Find out what your peers are saying about Elastic Search vs. Pinecone and other solutions. Updated: December 2025.
881,384 professionals have used our research since 2012.