Try our new research platform with insights from 80,000+ expert users

Anaconda vs Darwin comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Anaconda
Ranking in Data Science Platforms
12th
Average Rating
8.2
Reviews Sentiment
7.4
Number of Reviews
18
Ranking in other categories
No ranking in other categories
Darwin
Ranking in Data Science Platforms
27th
Average Rating
8.0
Reviews Sentiment
6.7
Number of Reviews
8
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of January 2025, in the Data Science Platforms category, the mindshare of Anaconda is 2.1%, down from 2.3% compared to the previous year. The mindshare of Darwin is 0.3%, down from 0.3% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Rohan Sharma - PeerSpot reviewer
Provides all the frameworks and makes it easy to create environments for multiple projects
The best thing is that it provides all the frameworks and makes it easy to create environments for multiple projects using Anaconda. It is easy for a beginner to learn to use Anaconda. Comparatively, it is easier than using virtual environments or other environments because of the Conda environment. However, there are many things in Anaconda that people need to be aware of, so it can be challenging.
AC
Empowers SMEs to build solutions and interface them with the existing business systems, products and workflows.
There's always room for improvement in the UI and continuing to evolve it to do everything that the rest of AI can do. Because it's so much better than traditional methods, we don't get a ton of complaints of, "Oh, we wish we could do that." Most people are happy to see that they can build models that quickly, and that it can be done by the people who actually understand the problem, i.e. SMEs, rather than having to rely on data scientists. There's a small learning curve, but it's shorter for an SME in a given industry to learn Darwin than it takes for data scientists to learn industry-specific problems. The industry I work in deals with tons and tons of data and a lot of it lends itself to Darwin-created solutions. Initially, there were some limitations around the size of the datasets, the number of rows and number of columns. That was probably the biggest challenge. But we've seen the Darwin product, over time, slowly remove those limitations. We're happy with the progress they've made.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"It helped us find find the optimal area for where our warehouse should be located."
"The notebook feature is an improvement over RStudio."
"The product is responsive, sleek and has a beautiful interface that is pleasant to use. It helps users to easily share code."
"It's interesting. It's user friendly. That's what makes it outstanding among the others. It has a collection of R, Python, and others. Their platform strategy has a collection of many other visualization tools, apart from Spyder and RStudio, which is really helpful for data science. For any data science professional, Anaconda is really handy. It has almost all the tools for data science."
"The documentation is excellent and the solution has a very large and active community that supports it."
"The solution is stable."
"The most advantageous feature is the logic building."
"The most valuable feature is the set of libraries that are used to support the functionality that we require."
"Darwin has increased efficiency and productivity for our company. With our risk management team, there were models that took them more than three days to process each, only to see the outcome. Now, it takes minutes for Darwin to process the current model. So, we can have it in minutes. We don't have to wait three days for all the models to be tested, then make a decision."
"I liked the data checking feature where it looks at your data and sees how viable it is for use. That's a really cool feature. Automatic assessment of the quality of datasets, to me, seems very valuable."
"The key feature is the automated model-building. It has a good UI that will let people who aren't data scientists get in there and upload datasets and actually start building models, with very little training. They don't need to have any understanding of data science."
"In terms of streamlining a lot of the low-level data science work, it does a few things there."
"The thing that I find most valuable is the ability to clean the data."
"The solution helps with the automatic assessment of the quality of datasets, such as missing data points or incorrect data types."
"The most valuable feature is the model-generation. With a nice dataset, Darwin gives you a nice model. That's a really nice feature because, if we're doing that ourselves, it's trial and error; we change the parameters a little and try again. We save time by just giving the dataset to Darwin and letting Darwin generate a model. We find the models it generates are good; better than we can generate."
"I find it quite simple to use. Once you are trained on the model, you can use it anyway you want."
 

Cons

"One thing that hurts the product is that the company is not doing more to advertise it as a solution and make it more well known."
"It also takes up a lot of space."
"I think that the framework can be improved to make it easier for people to discover and use things on their own."
"Anaconda should be optimized for RAM consumption."
"I think better documentation or a step-by-step guide for installation would help, especially for on-premise users."
"The interface could be improved. Other solutions, like Visual Studio, have much better UI."
"Having a small guide or video on the tool would help learn how to use it and what the features are."
"Anaconda can't handle heavy workloads."
"The challenge is very big toward making models operational or to industrialize them. E.g., what we want to do is to make unique credit models for each customer. So, we are preparing the types of customers who we can try new credit models on Darwin. But, I see this still very challenging to be able to get the data sets so Darwin can work. At this point, we are working it to get the data sets ready for Darwin."
"The Read Me's and the tutorials need to be greatly improved to get customers to understand how things work. It might be helpful to have some sample data sets for people to play around with, as well as some tutorial videos. It was very hard to find information on this in the time crunch that we had, to see how it worked and then make it work, while interfacing with folks at SparkCognition."
"There are issues around the ethics of artificial intelligence and machine learning. You need to have a lot of transparency regarding what is going on under the hood in order to trust it. Because so much is done under the hood of Darwin, it is hard to trust how it gets the answers it gets."
"Our main data repository is on AWS. The trouble we are having is that we have to download the data from our repository to bring it into Darwin. It would be great if there was an API to connect our repository to Darwin."
"There's always room for improvement in the UI and continuing to evolve it to do everything that the rest of AI can do."
"Something they are working on, which is great, is to have an API that can access data directly from the source. Currently, we have to create a specific dataset for each model."
"An area where Darwin might be a little weak is its automatic assessment of the quality of datasets. The first results it produces in this area are good, but in our experience, we have found that extra analysis is needed to produce an extra-clean set of data."
"The analyze function takes a lot of time."
 

Pricing and Cost Advice

"The product is open-source and free to use."
"My company uses the free version of the tool. There is also a paid version of the tool available."
"The tool is open-source."
"The licensing costs for Anaconda are reasonable."
"Anaconda is free to use, but in terms of hardware costs, you might need heavy GPUs to run CUDA and other demanding tasks."
"In just six months, we calculated six million pesos that we have prevented in revenue from going away with another customer because of this solution. Thanks to Darwin, we didn't lose those six million pesos."
"As far as I understand, my company is not paying anything to use the product."
"I believe our cost is $1,000 per month."
"The license cost is not cheap, especially not for markets like Mexico. But sometimes, you do have to make these leap of faith for some tools to see if they can get you the disruption that you are aiming for. The investment has paid off for us very well."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
831,158 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
20%
Computer Software Company
10%
Manufacturing Company
8%
University
8%
Computer Software Company
25%
Real Estate/Law Firm
15%
Financial Services Firm
13%
Educational Organization
11%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Anaconda?
The tool's most valuable feature is its cloud-based nature, allowing accessibility from anywhere. Additionally, using Jupyter Notebook makes it easy to handle bugs and errors.
What is your experience regarding pricing and costs for Anaconda?
Anaconda does not require a pricing structure, and it is available as an open-source tool. The features of Python, Jupyter, and others are free to use.
What needs improvement with Anaconda?
Anaconda consumes a significant amount of processing memory when working on it. This is something that needs improvement as it can impact performance.
Ask a question
Earn 20 points
 

Comparisons

 

Overview

 

Sample Customers

LinkedIn, NASA, Boeing, JP Morgan, Recursion Pharmaceuticals, DARPA, Microsoft, Amazon, HP, Cisco, Thomson Reuters, IBM, Bridgestone
Hunt Oil, Hitachi High-Tech Solutions
Find out what your peers are saying about Anaconda vs. Darwin and other solutions. Updated: January 2025.
831,158 professionals have used our research since 2012.