Try our new research platform with insights from 80,000+ expert users

Google Cloud AI Platform vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Jan 12, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Cloud AI Platform
Ranking in AI Development Platforms
7th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
9
Ranking in other categories
No ranking in other categories
Microsoft Azure Machine Lea...
Ranking in AI Development Platforms
3rd
Average Rating
7.6
Reviews Sentiment
7.0
Number of Reviews
60
Ranking in other categories
Data Science Platforms (4th)
 

Mindshare comparison

As of January 2025, in the AI Development Platforms category, the mindshare of Google Cloud AI Platform is 5.6%, down from 7.1% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 9.4%, down from 16.0% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

Vipul-Kumar - PeerSpot reviewer
An AI platform AI Platform to train your machine learning models at scale, to host your trained model in the cloud, and to use your model to make predictions about new data
I think it's the it it also has has evolved quite a bit over the last few years, and Google Cloud folks have been getting, more and more services. But I think from a improvement standpoint, so maybe they can look at adding more algorithms, so adding more AI algorithms to their suite.
HéctorGiorgiutti - PeerSpot reviewer
Requires minimal maintenance, is scalable, and stable
The initial setup depends on the developer's knowledge of machine learning models as to whether it is easy or difficult. With a good understanding of these models, then we can get to work quickly in the environment. With 20 years of experience in IT, making applications on legacy platforms and non-web platforms, I have found that Azure has a very good implementation. The platform is so comprehensive that it doesn't matter what kind of work we do, we can find the tools needed to get the job done. In comparison to what I was doing five years ago, Azure is a great platform and I really enjoy working with it. We should allocate up to 12 percent of our project time to deployment. Depending on the complexity of the solution, we should expect to spend more time on deployment.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The feedback left about these tools was really helpful and informative for us"
"Some of the valuable features are the vast amount of services that are available, such as load balancer, and the AI architecture."
"I think the user interface is quite handy, and it is easy to use as compared to the other cloud platforms."
"The solution is able to read 90% of the documents correctly with a 10% error rate."
"A range of a a wide range of algorithms, EIM voice mails, which can be plugged in right away into your solution into into into our solution, and then have platform that provides know, to to come up with an operational solution really quick."
"The platform's Google Vision API is particularly valuable."
"Since the model could be trained in just a couple of hours and deploying it took only a few minutes, the entire process took less than an hour."
"I have seen measurable benefits from Google Cloud AI Platform."
"Their support is helpful."
"One of the notable advantages is that it offers both a visual designer, which is user-friendly, and an advanced coding option."
"The notebook feature allows you to write inquiries and create dashboards. These dashboards can integrate with multiple databases, such as Excel, HANA, or SQL Server."
"I like that it's totally easy to use. They have an AutoML solution, and their machine learning model is highly accurate. They also have a feature that can explain the machine learning model. This makes it easy for me to understand that model."
"The product's initial setup phase is easy."
"I've developed a couple of chatbots using Azure OpenAI, leveraging its documented solutions and APIs. The tools available make it straightforward to implement machine learning solutions. However, there are challenges, such as hallucinations and security issues, but overall, it works well and is quite fast, allowing for the development of interesting projects."
"The solution is really scalable."
"The interface is very intuitive."
 

Cons

"It could be more clear, and sometimes there are errors that I don't quite understand."
"The solution can be improved by simplifying the process to make your own models."
"Customizations are very difficult, and they take time."
"Improvements in text extraction accuracy and pricing adjustments would be helpful."
"The initial setup was straightforward for me but could be difficult for others."
"The technical support from Google is not very fast. I think it is about a five out of ten even though they have courses online where I can learn a lot, if I really need support, I have to wait a very long time."
"The model management on Google Cloud AI Platform could be better."
"At first, there were only the user-managed rules to identify the best attributes of the individual. Then, we came up with a truth set and developed different machine learning models with the help of that truth set, so now it's completely machine learning."
"The initial setup time of the containers to run the experiment is a bit long."
"The price could be improved."
"This solution could be improved if they could integrate the data pipeline scheduling part for their interface."
"In terms of improvement, I'd like to have more ability to construct and understand the detailed impact of the variables on the model. Their algorithms are very powerful and they explain overall the net contribution of each of the variables to the solution. In terms of being able to say to people "If you did this, you'll get this much more improvement" it wasn't great."
"Microsoft should also include more examples and tutorials for using this product.​"
"It is not easy. It is a complex solution. It takes some time to get exposed to all the concepts. We're trying to have a CI/CD pipeline to deploy a machine learning model using negative actions. It was not easy. The components that we're using might have something to do with this."
"The interface is a bit overloaded."
"I would like to see modules to handle Deep Learning frameworks."
 

Pricing and Cost Advice

"The licenses are cheap."
"For every thousand uses, it is about four and a half euros."
"The price of the solution is competitive."
"The pricing is on the expensive side."
"The solution has an attractive starting program, which costs only 300 USD for a duration of three months. During this period, one can accomplish a lot of work on the solution."
"Last year, we paid 60,000 for Microsoft Azure Machine Learning Studio in our department."
"We pay only the Azure costs for what we use, which involves some subscription costs. But essentially, you pay for what you use. There are no extra costs in addition to the standard licensing fees."
"To use MLS is fairly cheap. Even the paid account is something like $20/month, unless you are provisioning large numbers of VMs for a Hadoop cluster. The main MS makes money with this solution is forcing the user to deploy their model on REST API, and being charged each time the API is accessed. There are several pricing tiers for the API. If you do not use the API, then value of MLS is to create rapid experiments ($20/month). The resulting model is not exportable to use, thus you’ll have to recreate the algorithms in either R or Python, which is what I did. MLS results gave me a direction to work with, the actual work is mostly done in R and Python outside of MLS."
"The solution operates on a pay-per-use model."
"I am paying for it following a pay-as-you-go. So, the more I use it, the more it costs."
"There isn’t any such expensive costs and only a standard license is required."
"There is a lack of certainty with the solution's pricing."
"My team didn't deal with the licensing for Microsoft Azure Machine Learning Studio, so I'm unable to comment on pricing, but the money that was spent on the tool was worth it."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
831,265 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
15%
Financial Services Firm
11%
Manufacturing Company
10%
University
9%
Financial Services Firm
13%
Computer Software Company
10%
Manufacturing Company
9%
Healthcare Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Google Cloud AI Platform?
A range of a a wide range of algorithms, EIM voice mails, which can be plugged in right away into your solution into into into our solution, and then have platform that provides know, to to come up...
What is your experience regarding pricing and costs for Google Cloud AI Platform?
For the most part, the pricing is perfect sinceit grows with the use of my app. In some cases, they could be more specific about the pricing, especially for some AI features.
What is your primary use case for Google Cloud AI Platform?
I use Google Cloud AI Platform due to Firebase and the many APIs that are available with it.
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
Pricing is considered to be top-segment and should be improved. I rate the pricing as three or four on a scale of one to ten in terms of affordability.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Learn More

Video not available
 

Overview

 

Sample Customers

Carousell
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Google Cloud AI Platform vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: January 2025.
831,265 professionals have used our research since 2012.