Try our new research platform with insights from 80,000+ expert users

Google Cloud AI Platform vs Google Vertex AI comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Cloud AI Platform
Ranking in AI Development Platforms
7th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
9
Ranking in other categories
No ranking in other categories
Google Vertex AI
Ranking in AI Development Platforms
2nd
Average Rating
8.4
Reviews Sentiment
7.4
Number of Reviews
10
Ranking in other categories
AI Infrastructure (1st)
 

Mindshare comparison

As of January 2025, in the AI Development Platforms category, the mindshare of Google Cloud AI Platform is 5.6%, down from 7.1% compared to the previous year. The mindshare of Google Vertex AI is 18.8%, up from 17.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

Vipul-Kumar - PeerSpot reviewer
An AI platform AI Platform to train your machine learning models at scale, to host your trained model in the cloud, and to use your model to make predictions about new data
I think it's the it it also has has evolved quite a bit over the last few years, and Google Cloud folks have been getting, more and more services. But I think from a improvement standpoint, so maybe they can look at adding more algorithms, so adding more AI algorithms to their suite.
Serge Dahdouh - PeerSpot reviewer
A user-friendly platform that automatizes machine learning techniques with minimal effort
We work with clients who request the implementation of a certain document into a chatbot. Because of the limited knowledge of AI, our task is to link that file to the ML and provide a platform that can work as a customer service. We previously used LangChain Phython, but now it is done through Vertex AI.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"A range of a a wide range of algorithms, EIM voice mails, which can be plugged in right away into your solution into into into our solution, and then have platform that provides know, to to come up with an operational solution really quick."
"Since the model could be trained in just a couple of hours and deploying it took only a few minutes, the entire process took less than an hour."
"I think the user interface is quite handy, and it is easy to use as compared to the other cloud platforms."
"The solution is able to read 90% of the documents correctly with a 10% error rate."
"Some of the valuable features are the vast amount of services that are available, such as load balancer, and the AI architecture."
"The initial setup is very straightforward."
"On GCP, we are exposing our API services to our clients so that they send us their information. It can be single individual records or it can be a batch of their clients."
"The feedback left about these tools was really helpful and informative for us"
"The most valuable features of the solution are that it is quite flexible, and some of the services are almost low-code, with no-code services, so it gives agents flexibility to build the use cases according to the operational needs."
"The integration of AutoML features streamlines our machine-learning workflows."
"Vertex AI possesses multiple libraries, so it eliminates the need for extensive coding."
"We extensively utilize Google Cloud's Vertex AI platform for our machine learning workflows. Specifically, we leverage the IO branch for EDA data in Suresh Live Virtual, employing Forte IT for training machine learning models. The AI model registry in Vertex AI is crucial for cataloging and managing various versions of the models we develop. When it comes to deploying models, we rely on Google Cloud's AI Prediction service, seamlessly integrating it into our workflow for real-time predictions or streaming. For monitoring and tracking the outcomes of model development, we employ Vertex AI Monitoring, ensuring a comprehensive understanding of the model's performance and results. This integrated approach within Vertex AI provides a unified platform for managing, deploying, and monitoring machine learning models efficiently."
"Vertex comes with inbuilt integration with GCP for data storage."
"The most valuable feature we've found is the model garden, which allows us to deploy and use various models through the provided endpoints easily."
"The monitoring feature is a true life-saver for data scientists. I give it a ten out of ten."
"Google Vertex AI is an out-of-the-box and very easy-to-use solution."
 

Cons

"Customizations are very difficult, and they take time."
"Improvements in text extraction accuracy and pricing adjustments would be helpful."
"One thing that I found is that Azure ML does not directly provide you with features on Google Cloud AI Platform, whereas Vertex provides some features of the platform."
"It could be more clear, and sometimes there are errors that I don't quite understand."
"I think it's the it it also has has evolved quite a bit over the last few years, and Google Cloud folks have been getting, more and more services. But I think from a improvement standpoint, so maybe they can look at adding more algorithms, so adding more AI algorithms to their suite."
"The technical support from Google is not very fast. I think it is about a five out of ten even though they have courses online where I can learn a lot, if I really need support, I have to wait a very long time."
"At first, there were only the user-managed rules to identify the best attributes of the individual. Then, we came up with a truth set and developed different machine learning models with the help of that truth set, so now it's completely machine learning."
"The initial setup was straightforward for me but could be difficult for others."
"I'm not sure if I have suggestions for improvement."
"Both major systems, Azure and Google, are not yet stabilized, especially their customer support."
"I believe that Vertex AI is a robust platform, but its effectiveness depends significantly on the domain knowledge of the developer using it. While Vertex AI does offer support through the console UI in the Google Cloud environment, it is better suited for technical members who have a deeper understanding of machine learning concepts. The platform may be challenging for business process developers (BPDUs) who lack extensive technical knowledge, as it involves intricate customization and handling numerous parameters. Effectively utilizing Vertex AI requires not only familiarity with machine learning frameworks like TensorFlow or PyTorch but also a proficiency in Python programming. The complexity of these requirements might pose challenges for less technically oriented users, making it crucial to have a solid foundation in both machine learning principles and Python coding to extract the full value from Vertex AI. It would be beneficial to have a streamlined process where we can leverage the capabilities of Vertex AI directly through the BigQuery UI. This could involve functionalities such as creating machine learning models within the BigQuery UI, providing a more user-friendly and integrated experience. This would allow users to access and analyze data from BigQuery while simultaneously utilizing Vertex AI to build machine learning models, fostering a more cohesive and efficient workflow."
"It would be beneficial to have certain features included in the future, such as image generators and text-to-speech solutions."
"The tool's documentation is not good. It is hard."
"I think the technical documentation is not readily available in the tool."
"Google Vertex AI is good in machine learning and AI, but it lacks optimization."
"I've noticed that using chat activity often presents a broader range of options and insights for a well-constructed question. Improving the knowledge base could be a key aspect for enhancement—expanding the information sources to enhance the generation process."
 

Pricing and Cost Advice

"The licenses are cheap."
"The pricing is on the expensive side."
"For every thousand uses, it is about four and a half euros."
"The solution has an attractive starting program, which costs only 300 USD for a duration of three months. During this period, one can accomplish a lot of work on the solution."
"The price of the solution is competitive."
"I think almost every tool offers a decent discount. In terms of credits or other stuff, every cloud provider provides a good number of incentives to onboard new clients."
"The price structure is very clear"
"The solution's pricing is moderate."
"The Versa AI offers attractive pricing. With this pricing structure, I can leverage various opportunities to bring value to my business. It's a positive aspect worth considering."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
831,265 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
15%
Financial Services Firm
11%
Manufacturing Company
10%
University
9%
Financial Services Firm
13%
Computer Software Company
13%
Manufacturing Company
9%
Retailer
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Google Cloud AI Platform?
A range of a a wide range of algorithms, EIM voice mails, which can be plugged in right away into your solution into into into our solution, and then have platform that provides know, to to come up...
What is your experience regarding pricing and costs for Google Cloud AI Platform?
For the most part, the pricing is perfect sinceit grows with the use of my app. In some cases, they could be more specific about the pricing, especially for some AI features.
What is your primary use case for Google Cloud AI Platform?
I use Google Cloud AI Platform due to Firebase and the many APIs that are available with it.
What do you like most about Google Vertex AI?
We extensively utilize Google Cloud's Vertex AI platform for our machine learning workflows. Specifically, we leverage the IO branch for EDA data in Suresh Live Virtual, employing Forte IT for trai...
What is your experience regarding pricing and costs for Google Vertex AI?
They have different pricing models like pay-as-you-go or subscription model, and total cost of ownership. It is comparatively cheaper than Azure.
What needs improvement with Google Vertex AI?
I'm not sure if I have suggestions for improvement. Based on my comparison between the two, Vertex has various additional functionalities that Azure doesn't provide.
 

Learn More

Video not available
 

Overview

 

Sample Customers

Carousell
Information Not Available
Find out what your peers are saying about Google Cloud AI Platform vs. Google Vertex AI and other solutions. Updated: January 2025.
831,265 professionals have used our research since 2012.