Try our new research platform with insights from 80,000+ expert users
Kenneth Dozier - PeerSpot reviewer
Associate Software Engineer at H&R Block, Inc.
User
Easy to use with good speed and helpful dashboards
Pros and Cons
  • "Watchdog is a favorite feature among a lot of the devs. It catches things they didn't even know were an issue."
  • "I would like to see the integration between PagerDuty and Datadog improved. The tags in Datadog don't match those in PagerDuty, and we have to make it work."

What is our primary use case?

We are using Datadog to improve our cloud monitoring and observability across our enterprise apps.  We have integrated a lot of different resources into Datadog, like Kubernetes, App Gateways, App Service Environments, App Service Plans, and other Web App resources. 

I will be using the monitoring and observability features of Datadog. Dashboards are used very heavily by teams and SREs. We really have seen that Datadog has already improved both our monitoring and our observability.

How has it helped my organization?

The ease and speed of which you can create a dashboard has been a huge improvement.  

The different types of monitors we can create have been huge, too. We can do so many different things with monitors that we couldn't do before with our alerts. 

Being able to click on a trace or log and drill down on it to see what happened has been great.  

Some have found the learning curve a bit steep. That said,they are coming around slowly. There is just a lot of information to learn how to navigate.

What is most valuable?

The different types of monitors have been very valuable. We have been able to make our alerts (monitors) more actionable than we were able to previously.  

Watchdog is a favorite feature among a lot of the devs. It catches things they didn't even know were an issue. 

RUM is another feature a lot of us are looking forward to seeing how it can help us improve our customer experience during tax season.  

We hope to enable the code review feature at some point to so we can see what code caused the issue.

What needs improvement?

I would like to see the integration between PagerDuty and Datadog improved.  The tags in Datadog don't match those in PagerDuty, and we have to make it work.  Also, I would like to see if the ability to replicate a KQL query in Datadog is made easier or better.  

I would like to see the alert communications to email or phones made better so we could hopefully move off PagerDuty and just use Datadog for that. 

There are also a lot of features that we haven't budgeted for yet and I would like for us to be able to use them in the future.

Buyer's Guide
Datadog
March 2025
Learn what your peers think about Datadog. Get advice and tips from experienced pros sharing their opinions. Updated: March 2025.
839,319 professionals have used our research since 2012.

For how long have I used the solution?

I've used the solution for about two years.

Which deployment model are you using for this solution?

Hybrid Cloud
Disclosure: My company has a business relationship with this vendor other than being a customer: H&R Block has recently signed with DataDog.
Flag as inappropriate
PeerSpot user
reviewer9816413 - PeerSpot reviewer
Engineering Manager at Video Blocks
User
Top 20
Easy, more reliable, and transparent monitoring
Pros and Cons
  • "Monitors have also been very valuable when setting up our on-call processes. It makes it easy to set up and adjust alerting to keep our teams aware of anything going wrong."
  • "One thing to improve would be making it easier to see common patterns across traces."

What is our primary use case?

We use the solution to monitor and investigate issues with production services at work. We're periodically reviewing the service catalog view for the various applications and I use it to identify any anomalies with service metrics, any changes in user behavior evident via API calls, and/or spikes in errors.  

We use monitors to trigger alerts for on-call engineers to act upon. The monitors have set thresholds for request latency, error rates, and throughput. 

We also use automated rules to block bad actors based on request volume or patterns.

How has it helped my organization?

Datadog has made setting up monitors easier, more reliable, and more transparent. This has helped standardize our on-call process and set all of our on-call engineers up for success.  

It has also standardized the way we evaluate issues with our applications by encouraging all teams to use the service catalog.  

It makes it easier for our platforms and QA teams to get other engineering teams up to speed with managing their own applications' performance. 

Overall, Datadog has been very helpful for us.

What is most valuable?

The service catalog view is very helpful for periodic reviews of our application. It has also standardized the way we evaluate issues with our applications.  Having one page with an easy-to-scan view of app metrics, error patterns, package vulnerabilities, etc., is very helpful and reduces friction for our full-stack engineers.

Monitors have also been very valuable when setting up our on-call processes. It makes it easy to set up and adjust alerting to keep our teams aware of anything going wrong.

What needs improvement?

Datadog is great overall. One thing to improve would be making it easier to see common patterns across traces. I sometimes end up in a trace but have a hard time finding other common features about the error/requests that are similar to that trace. This could be easier to get to; however, in that case, it's actually an education issue.  

Another thing that could be improved is the service list page sometimes refreshes slowly, and I accidentally click the wrong environment since the sort changes late.

For how long have I used the solution?

I've used the solution for about a year.

What do I think about the stability of the solution?

It is very stable. I have not seen any issues with Datadog.

What do I think about the scalability of the solution?

It seems very scalable.

How are customer service and support?

I've had no specific experience with technical support.

How would you rate customer service and support?

Neutral

Which solution did I use previously and why did I switch?

We used Honeycomb before. We switched since Datadog offered more tooling.

How was the initial setup?

Each application has been easy to instrument.

What about the implementation team?

We implemented the solution in-house.

What was our ROI?

Engineers save an unquantifiable amount of time by having one standard view for all applications and monitors.

What's my experience with pricing, setup cost, and licensing?

I am not exposed to this aspect of Datadog.

Which other solutions did I evaluate?

We did not evaluate other options. 

Which deployment model are you using for this solution?

Public Cloud
Disclosure: I am a real user, and this review is based on my own experience and opinions.
Flag as inappropriate
PeerSpot user
Buyer's Guide
Datadog
March 2025
Learn what your peers think about Datadog. Get advice and tips from experienced pros sharing their opinions. Updated: March 2025.
839,319 professionals have used our research since 2012.
Head of Software at Emporia
User
Top 10
Good centralized pipeline tracking and error logging with very good performance
Pros and Cons
  • "Real user monitoring gives us invaluable insights into actual user experiences, helping us prioritize improvements where they matter most."
  • "In some cases the screenshots don't match the text as updates are made."

What is our primary use case?

Our primary use case is custom and vendor-supplied web application log aggregation, performance tracing and alerting. 

We run a mix of AWS EC2, Azure serverless, and colocated VMWare servers to support higher education web applications. 

Managing a hybrid multi-cloud solution across hundreds of applications is always a challenge. 

Datadog agents on each web host and native integrations with GitHubAWS, and Azure get all of our instrumentation and error data in one place for easy analysis and monitoring.

How has it helped my organization?

Using Datadog across all of our apps, we were able to consolidate a number of alerting and error-tracking apps, and Datadog ties them all together in cohesive dashboards. 

Whether the app is vendor-supplied or we built it ourselves, the depth of tracing, profiling, and hooking into logs is all obtainable and tunable. Both legacy .NET Framework and Windows Event Viewer and cutting-edge .NET Core with streaming logs all work. 

The breadth of coverage for any app type or situation is really incredible. It feels like there's nothing we can't monitor.

What is most valuable?

When it comes to Datadog, several features have proven particularly valuable. For example, the centralized pipeline tracking and error logging provide a comprehensive view of our development and deployment processes, making it much easier to identify and resolve issues quickly. 

Synthetic testing has been a game-changer, allowing us to catch potential problems before they impact real users. 

Real user monitoring gives us invaluable insights into actual user experiences, helping us prioritize improvements where they matter most. And the ability to create custom dashboards has been incredibly useful, allowing us to visualize key metrics and KPIs in a way that makes sense for different teams and stakeholders. 

Together, these features form a powerful toolkit that helps us maintain high performance and reliability across our applications and infrastructure, ultimately leading to better user satisfaction and more efficient operations.

What needs improvement?

They need an expansion of the Android and IOS apps to provide a simplified CI/CD pipeline history view. 

I like the idea of monitoring on the go. That said, it seems the options are still a bit limited out of the box. 

While the documentation is very good considering all the frameworks and technology Datadog covers, there are areas - specifically .NET Profiling and Tracing of IIS hosted apps - that need a lot of focus to pick up on the key details needed. 

In some cases the screenshots don't match the text as updates are made. I spent longer than I should figuring out how to correlate logs to traces, mostly related to environmental variables.

For how long have I used the solution?

I've used the solution for about three years.

What do I think about the stability of the solution?

We have been impressed with the uptime and clean and light resource usage of the agents.

What do I think about the scalability of the solution?

The solution has been very scalable and very customizable.

How are customer service and support?

Support is always helpful to help us tune our committed costs and alert us when we start spending out of the on-demand budget.

Which solution did I use previously and why did I switch?

We used a mix of a custom error email system, SolarWinds, UptimeRobot, and GitHub actions. We switched to find one platform that could give deep app visibility regardless of Linux or Windows or Container, cloud or on-prem hosted.

How was the initial setup?

The implementation is generally simple. That said, .NET Profiling of IIS and aligning logs to traces and profiles was a challenge.

What about the implementation team?

The solution was implemented in-house. 

What was our ROI?

Our ROI has been significant time saved by the development team assessing bugs and performance issues.

What's my experience with pricing, setup cost, and licensing?

Set up live trials to asses cost scaling. Small decisions around how monitors are used can impact cost scaling. 

Which other solutions did I evaluate?

NewRelic was considered. LogicMonitor was chosen over Datadog for our network and campus server management use cases.

What other advice do I have?

We are excited to explore the new offerings around LLM further and continue to expand our presence in Datadog. 

Which deployment model are you using for this solution?

Hybrid Cloud

If public cloud, private cloud, or hybrid cloud, which cloud provider do you use?

Microsoft Azure
Disclosure: I am a real user, and this review is based on my own experience and opinions.
Flag as inappropriate
PeerSpot user
Neil Elver - PeerSpot reviewer
Application Development Team Lead at TCS EDUCATION SYSTEM
User
Top 10
Good synthetic testing, centralized pipeline tracking and error logging
Pros and Cons
  • "Synthetic testing has been a game-changer, allowing us to catch potential problems before they impact real users."
  • "I'd like to see an expansion of the Android and IOS apps to have a simplified CI/CD pipeline history view."

What is our primary use case?

Our primary use case is custom and vendor-supplied web application log aggregation, performance tracing and alerting. 

We run a mix of AWS EC2, Azure serverless, and colocated VMWare servers to support higher education web applications. 

Managing a hybrid multi-cloud solution across hundreds of applications is always a challenge. Datadog agents on each web host and native integrations with GitHubAWS, and Azure get all of our instrumentation and error data in one place for easy analysis and monitoring.

How has it helped my organization?

Through the use of Datadog across all of our apps, we were able to consolidate a number of alerting and error-tracking apps, and Datadog ties them all together in cohesive dashboards. Whether the app is vendor-supplied or we built it ourselves, the depth of tracing, profiling, and hooking into logs is all obtainable and tunable. Both legacy .NET Framework and Windows Event Viewer and cutting-edge .NET Core with streaming logs all work. The breadth of coverage for any app type or situation is really incredible. It feels like there's nothing we can't monitor.

What is most valuable?

When it comes to Datadog, several features have proven particularly valuable. 

The centralized pipeline tracking and error logging provide a comprehensive view of our development and deployment processes, making it much easier to identify and resolve issues quickly. 

Synthetic testing has been a game-changer, allowing us to catch potential problems before they impact real users. Real user monitoring gives us invaluable insights into actual user experiences, helping us prioritize improvements where they matter most. And the ability to create custom dashboards has been incredibly useful, allowing us to visualize key metrics and KPIs in a way that makes sense for different teams and stakeholders. 

Together, these features form a powerful toolkit that helps us maintain high performance and reliability across our applications and infrastructure, ultimately leading to better user satisfaction and more efficient operations.

What needs improvement?

I'd like to see an expansion of the Android and IOS apps to have a simplified CI/CD pipeline history view. I like the idea of monitoring on the go, however, it seems the options are still a bit limited out of the box. 

While the documentation is very good considering all the frameworks and technology Datadog covers, there are areas - specifically .NET Profiling and Tracing of IIS-hosted apps - that need a lot of focus to pick up on the key details needed. In some cases the screenshots don't match the text as updates are made. I feel I spent longer than I should figuring out how to correlate logs to traces, mostly related to environmental variables.

For how long have I used the solution?

I've used the solution for about three years.

What do I think about the stability of the solution?

We have been impressed with the uptime and clean and light resource usage of the agents.

What do I think about the scalability of the solution?

The solution was very scalable and very customizable.

How are customer service and support?

Sales service is always helpful in tuning our committed costs and alerting us when we start spending outside the on-demand budget.

Which solution did I use previously and why did I switch?

We used a mix of a custom error email system, SolarWinds, UptimeRobot, and GitHub actions. We switched to find one platform that could give deep app visibility regardless of Linux, Windows, Container, cloud or on-prem hosted.

How was the initial setup?

The setup is generally simple. That said, .NET Profiling of IIS and aligning logs to traces and profiles was a challenge.

What about the implementation team?

The solution was iImplemented in-house. 

What was our ROI?

I'd count our ROI as significant time saved by the development team assessing bugs and performance issues.

What's my experience with pricing, setup cost, and licensing?

It's a good idea to set up live trials to asses cost scaling. Small decisions around how monitors are used can have big impacts on cost scaling. 

Which other solutions did I evaluate?

NewRelic was considered. LogicMonitor was chosen over Datadog for our network and campus server management use cases.

What other advice do I have?

We are excited to dig further into the new offerings around LLM and continue to grow our footprint in Datadog. 

Which deployment model are you using for this solution?

Hybrid Cloud

If public cloud, private cloud, or hybrid cloud, which cloud provider do you use?

Microsoft Azure
Disclosure: I am a real user, and this review is based on my own experience and opinions.
Flag as inappropriate
PeerSpot user
reviewer08624379 - PeerSpot reviewer
Senior DevOps Engineer at MIM Software Inc.
User
Great documentation and learning platform with good built-in integrations
Pros and Cons
  • "Datadog's learning platform is second to none."
  • "Datadog's roadmap can be a bit unpredictable at times."

What is our primary use case?

We were looking for an all-in-one observability platform that could handle a number of different environments and products. At a basic level, we have a variety of on-premises servers (Windows/Mac/Linux) as well as a number of commercial, cloud-hosted products. 

While it's often possible to let each team rely on its own means for monitoring, we wanted something that the entire company could rally around - a unified platform that is developed and supported by the very same people, not others just slapping their name on some open source products they have no control over.

How has it helped my organization?

Datadog has effortlessly dropped in to nearly every stage of observability for us. We appreciate how it has robust cross-platform support for our IT assets, and for integrating hosted products, enabling integrations often couldn't be easier, with many of them including native dashboards and even other types of content packs. 

Over the last couple of years, we have onboarded a number of engineering teams, and each of them feels comfortable using Datadog. This gives us the ability to build organizational knowledge.

What is most valuable?

Datadog's learning platform is second to none. It's the gold standard of training resources in my mind; not only are these self-paced courses available at no charge, but you can spin up an actual Datadog environment to try out its various features. 

I just hate when other vendors try to upsell you on training beyond their (often poorly-written) documentation. Apart from that, we appreciate the variety of content that comes from Datadog's built-in integrations - for common sources, we don't have to worry about parsing, creating dashboards, or otherwise reinventing the wheel.

What needs improvement?

Datadog's roadmap can be a bit unpredictable at times. For instance, a few years ago, our rep at the time stated that Datadog had dropped its plans to develop an incident on-call platform. However, this year, they released a platform that does exactly that.

They also decided to drop chat-based support just recently. While I understand that it's often easier to work with support tickets, I do miss the easy availability of live support. 

It would be nice if Datadog continued to broaden its variety of available integrations to include even more commercial platforms because that is central to its appeal. If we're looking at a new product and there isn't a native integration, then that's more work on our part.

Disclosure: I am a real user, and this review is based on my own experience and opinions.
Flag as inappropriate
PeerSpot user
reviewer2561139 - PeerSpot reviewer
Director of DevSecOps at CIBT
User
Consistent, centralized service for varied cloud-based applications
Pros and Cons
  • "Our primary alerts, based on metrics and synthetic transactions, are the most used and relied upon for decreased MTTA/MTTR across all of our platforms. This is followed by deep log analysis that enables us to quickly and easily get to a preliminary root cause that someone on the infrastructure, platform or development teams can take and focus their attention on the precise target that Datadog revealed as the issue to be remediated."
  • "They could enhance the alerting functions by creating a new feature to add direct SMS notifications, on-call rotation scheduling, etc., that could replace the need to have this as an external third-party solution integration."

What is our primary use case?

The current use case for Datadog in our environment is observability.  We use Datadog as the primary log ingestion and analysis point, along with consolidation of application/infrastructure metrics across cloud environments and realtime alerting to issues that arise in production.  

Datadog integrates within all aspects of our infrastructure and applications to provide valuable insights into Containers, Serverless functions, Deep Logging Analysis, Virtualized Hardware and Cost Optimizations.

How has it helped my organization?

Datadog improved our observability layer by creating a consistent, centralized service for all of our varied cloud-based applications. All of our production and non-production environment applications and infrastructure send metrics directly to Datadog for analysis and determination of any issues that would need to be looked at by the Infrastructure, Platform and Development teams for quick remediation. Using Datadog as this centralized Observability platform has enabled us to become leaner without sacrificing project timelines when issues arise and require triage for efficient resolution.

What is most valuable?

All of Datadog's features have become valuable tools in our cloud environments.

Our primary alerts, based on metrics and synthetic transactions, are the most used and relied upon for decreased MTTA/MTTR across all of our platforms. This is followed by deep log analysis that enables us to quickly and easily get to a preliminary root cause that someone on the infrastructure, platform or development teams can take and focus their attention on the precise target that Datadog revealed as the issue to be remediated.

What needs improvement?

The two areas I could see needing improvement or a feature to add value are building a more robust SIM that would include container scanning to rival other such products on the market so we do not need to extend functionality to another third-party provider. The other expands the alerting functions by creating a new feature to add direct SMS notifications, on-call rotation scheduling, etc., that could replace the need to have this as an external third party solution integration. 

For how long have I used the solution?

I've been a Datadog user for almost ten years.

What do I think about the stability of the solution?

Datadog is very stable, and we've only come across a few items that needed to be addressed quickly when there were issues.

What do I think about the scalability of the solution?

Scalability is very favorable, aside from cost/budget, which limits the scalability of this platform.

How are customer service and support?

Both customer service and support need a little work, as we have had a number of requests/issues that were not addressed as we needed them to be.

How would you rate customer service and support?

Neutral

Which solution did I use previously and why did I switch?

Being an Observability SME, I have used many native and third party solutions, including Dynatrace, New Relic, CloudWatch and Zabbix. As previously mentioned, Datadog provides a superior platform for centralizing and consolidating our Observability layer. Switching to Datadog was a no-brainer when most other solutions either didn't provide the maturity of functions, or have them available, at all.

How was the initial setup?

The initial setup was very straightforward, and the integrations were easily configured.

What about the implementation team?

We implemented Datadog in-house.

What was our ROI?

For the most part, Datadog's ROI is quite impressive when you consider all of the features and functions that are centralized on the platform. It doesn't require us to purchase additional third-party solutions to fill in the gaps.

What's my experience with pricing, setup cost, and licensing?

The setup was dead simple once the cloud integrations and agent components were identified and executed. Licensing falls into our normal third-party processes, so it was a familiar feeling when we started with Datadog. Cost is the only outlier when it comes to a perfect solution. Datadog is expensive, and each add-on drives that cost further into the realm of requiring justifications to finance expanding the core suite of features we would like to enable.

Which other solutions did I evaluate?

Yes, we evaluated several competing platforms that included Dynatrace, New Relic and Zabbix.

What other advice do I have?

They should provide more inclusive pricing, or an "all you can eat" tier that would include all relevant features, as opposed to individual cost increases to let Datadog to become more valuable and replace even more third-party solutions that have a lower cost of entry.

Which deployment model are you using for this solution?

Hybrid Cloud
Disclosure: I am a real user, and this review is based on my own experience and opinions.
Flag as inappropriate
PeerSpot user
Sid Nigam - PeerSpot reviewer
Works at RAPDEV LLC
User
Top 20
Unified platform with customizable dashboards and AI-driven insights
Pros and Cons
  • "The infrastructure monitoring capabilities, especially for our Kubernetes clusters, have helped us optimize resource allocation and reduce costs."
  • "We'd like to see more advanced incident management capabilities integrated directly into the platform."

What is our primary use case?

Our primary use case for this solution is comprehensive cloud monitoring across our entire infrastructure and application stack. 

We operate in a multi-cloud environment, utilizing services from AWS, Azure, and Google Cloud Platform. 

Our applications are predominantly containerized and run on Kubernetes clusters. We have a microservices architecture with dozens of services communicating via REST APIs and message queues. 

The solution helps us monitor the performance, availability, and resource utilization of our cloud resources, databases, application servers, and front-end applications. 

It's essential for maintaining high availability, optimizing costs, and ensuring a smooth user experience for our global customer base. We particularly rely on it for real-time monitoring, alerting, and troubleshooting of production issues.

How has it helped my organization?

Datadog has significantly improved our organization by providing us with great visibility across the entire application stack. This enhanced observability has allowed us to detect and resolve issues faster, often before they impact our end-users. 

The unified platform has streamlined our monitoring processes, replacing several disparate tools we previously used. This consolidation has improved team collaboration and reduced context-switching for our DevOps engineers. 

The customizable dashboards have made it easier to share relevant metrics with different stakeholders, from developers to C-level executives. We've seen a marked decrease in our mean time to resolution (MTTR) for incidents, and the historical data has been invaluable for capacity planning and performance optimization. 

Additionally, the AI-driven insights have helped us proactively identify potential issues and optimize our infrastructure costs.

What is most valuable?

We've found the Application Performance Monitoring (APM) feature to be the most valuable, as it provides great visibility on trace-level data. This granular insight allows us to pinpoint performance bottlenecks and optimize our code more effectively. 

The distributed tracing capability has been particularly useful in our microservices environment, helping us understand the flow of requests across different services and identify latency issues. 

Additionally, the log management and analytics features have greatly improved our ability to troubleshoot issues by correlating logs with metrics and traces. 

The infrastructure monitoring capabilities, especially for our Kubernetes clusters, have helped us optimize resource allocation and reduce costs.

What needs improvement?

While Datadog is an excellent monitoring solution, it could be improved by building more features to replace alerting apps like OpsGenie and PagerDuty. Specifically, we'd like to see more advanced incident management capabilities integrated directly into the platform. This could include features like sophisticated on-call scheduling, escalation policies, and incident response workflows. 

Additionally, we'd appreciate more customizable machine learning-driven anomaly detection to help us identify unusual patterns more accurately. Improved support for serverless architectures, particularly for monitoring and tracing AWS Lambda functions, would be beneficial. 

Enhanced security monitoring and threat detection capabilities would also be valuable, potentially reducing our reliance on separate security information and event management (SIEM) tools.

For how long have I used the solution?

I've used the solution for two years.

Disclosure: I am a real user, and this review is based on my own experience and opinions.
Flag as inappropriate
PeerSpot user
Michael Johnston1 - PeerSpot reviewer
Senior Software Engineer at angel Studios
Vendor
Top 20
A great tool with an easy setup and helpful error logs
Pros and Cons
  • "The setup cost was minimal."
  • "We did have an issue where a synthetic test was set up before the holiday break, and we were quickly charged a great amount. Our team worked with Datadog, and they were able to help us out since it was inadvertent on our end and was a user error."

What is our primary use case?

We currently have an error monitor to monitor errors on our prod environment.  Once we hit a certain threshold, we get an alert on Slack. This helps address issues the moment they happen before our users notice. 

We also utilize synthetic tests on many pages on our site. They're easy to set up and are great for pinpointing when a bug is shipped, but they may take down a less visited page that we aren't immediately aware of. It's a great extra check to make sure the code we ship is free of bugs.

How has it helped my organization?

The synthetic tests have been invaluable. We use them to check various pages and ensure functionality across multiple areas. Furthermore, our error monitoring alerts have been crucial in letting us know of problems the moment they pop up.  

Datadog has been a great tool, and all of our teams utilize many of its features.  We have regular mob sessions where we look at our Datadog error logs and see what we can address as a team. It's been great at providing more insight into our users and logging errors that can be fixed.

What is most valuable?

The error logs have been super helpful in breaking down issues affecting our users. Our monitors let us know once we hit a certain threshold as well, which is good for momentary blips and issues with third-party providers or rollouts that we have in the works. Just last week, we had a roll-out where various features were broken due to a change in our backend API. Our Datadog logs instantly notified us of the issues, and we could troubleshoot everything much more easily than just testing blind. This was crucial to a successful rollout.

What needs improvement?

I honestly can't think of anything that can be improved. We've started using more and more features from our Datadog account and are really grateful for all of the different ways we can track and monitor our site. 

We did have an issue where a synthetic test was set up before the holiday break, and we were quickly charged a great amount. Our team worked with Datadog, and they were able to help us out since it was inadvertent on our end and was a user error. That was greatly appreciated and something that helped start our relationship with the Datadog team.

For how long have I used the solution?

We've been using Datadog for several months. We started with the synthetic tests and now use It for error handling and in many other ways.

What do I think about the stability of the solution?

Stability has been great. We've had no issues so far.

What do I think about the scalability of the solution?

The solution is very easy to scale. We've used it on multiple clients.

How are customer service and support?

We had a dev who had set up a synthetic test that was running every five minutes in every single region over the holiday break last year. The Datadog team was great and very understanding and we were able to work this out with them.

How would you rate customer service and support?

Positive

Which solution did I use previously and why did I switch?

We didn't have any previous solution. At a previous company, I've used Sentry. However, I also find Datadog to be much easier, plus the inclusion of synthetic tests is awesome.

How was the initial setup?

The documentation was great and our setup was easy.

What about the implementation team?

We implemented the solution in-house.

What was our ROI?

This has had a great ROI as we've been able to address critical bugs that have been found via our Datadog tools.

What's my experience with pricing, setup cost, and licensing?

The setup cost was minimal. The documentation is great and the product is very easy to set up.

Which other solutions did I evaluate?

We also looked at other providers and settled on Datadog. It's been great to use across all our clients.

Which deployment model are you using for this solution?

Private Cloud
Disclosure: I am a real user, and this review is based on my own experience and opinions.
Flag as inappropriate
PeerSpot user
Buyer's Guide
Download our free Datadog Report and get advice and tips from experienced pros sharing their opinions.
Updated: March 2025
Buyer's Guide
Download our free Datadog Report and get advice and tips from experienced pros sharing their opinions.