Try our new research platform with insights from 80,000+ expert users
Tony Martinez1 - PeerSpot reviewer
Works at VANTA INC
Vendor
Great logging, session replays, and alerting
Pros and Cons
  • "Dashboards are helpful for reviewing occasionally to get a higher-level overview of what's happening."
  • "The UI has a lot going on. It should be simpler and have a better way to onboard someone new to using Datadog."

What is our primary use case?

Our primary use cases include:

  • Alert on errors customers encounter in our product. We've set up logs that go to slack to tell us when a certain error threshold is hit.
  • Investigate slow page load times. We have pages in our app that are loading slowly and the logs help us figure out which queries are taking the longest time.
  • Metrics. We collect metrics on product usage.
  • Session replays. We watch session replays to see what a user was doing when a page took a long time to load or hit an error. This is helpful.

How has it helped my organization?

It's helped us find bugs that customers are experiencing before they're reported to us. Sometimes, customers don't report errors, so being able to catch errors before they're reported helps us investigate before other users find errors

Datadog has helped us investigate slow page loading times and even see the specific queries that are taking a long time to load

Logging lets us see the context around an error. For example, see if a backend service had an error before it surfaced on the frontend.

Dashboards are helpful for reviewing occasionally to get a higher-level overview of what's happening.

What is most valuable?

The most valuable aspects include: 

  • Logging. Being able to view detailed logs helps debug issues.
  • Session replays. They are helpful for seeing what a customer was doing before they saw an error or had a slow page load
  • Alerting. This is an important part of our on-call process to send alerts to slack when an error threshold is crossed. Alerts/monitors are easy to configure to only alert when we want them to alert.
  • Dashboards. It's helpful to pull up dashboards that show our most common errors or page performance. It's a good way to see how the app is performing from a birds-eye-view.

What needs improvement?

The UI has a lot going on. It should be simpler and have a better way to onboard someone new to using Datadog.

The log querying syntax can be confusing. Usually, I filter by finding a facet in a log and selecting to filter by that facet - but I'm not sure how to write the filter myself

The monitor/alert syntax is also somewhat hard to understand.

Overall, it should be easier to learn how to use the product while you're using the product. Perhaps tooltips or a link to learn more about whatever section you're using.

Buyer's Guide
Datadog
December 2024
Learn what your peers think about Datadog. Get advice and tips from experienced pros sharing their opinions. Updated: December 2024.
825,399 professionals have used our research since 2012.

For how long have I used the solution?

I've used the solution for two years.

Which solution did I use previously and why did I switch?

We did not previously use a different solution.

Which other solutions did I evaluate?

We did not evaluate other options. 

Disclosure: I am a real user, and this review is based on my own experience and opinions.
Flag as inappropriate
PeerSpot user
reviewer2561139 - PeerSpot reviewer
Director of DevSecOps at CIBT
User
Consistent, centralized service for varied cloud-based applications
Pros and Cons
  • "Our primary alerts, based on metrics and synthetic transactions, are the most used and relied upon for decreased MTTA/MTTR across all of our platforms. This is followed by deep log analysis that enables us to quickly and easily get to a preliminary root cause that someone on the infrastructure, platform or development teams can take and focus their attention on the precise target that Datadog revealed as the issue to be remediated."
  • "They could enhance the alerting functions by creating a new feature to add direct SMS notifications, on-call rotation scheduling, etc., that could replace the need to have this as an external third-party solution integration."

What is our primary use case?

The current use case for Datadog in our environment is observability.  We use Datadog as the primary log ingestion and analysis point, along with consolidation of application/infrastructure metrics across cloud environments and realtime alerting to issues that arise in production.  

Datadog integrates within all aspects of our infrastructure and applications to provide valuable insights into Containers, Serverless functions, Deep Logging Analysis, Virtualized Hardware and Cost Optimizations.

How has it helped my organization?

Datadog improved our observability layer by creating a consistent, centralized service for all of our varied cloud-based applications. All of our production and non-production environment applications and infrastructure send metrics directly to Datadog for analysis and determination of any issues that would need to be looked at by the Infrastructure, Platform and Development teams for quick remediation. Using Datadog as this centralized Observability platform has enabled us to become leaner without sacrificing project timelines when issues arise and require triage for efficient resolution.

What is most valuable?

All of Datadog's features have become valuable tools in our cloud environments.

Our primary alerts, based on metrics and synthetic transactions, are the most used and relied upon for decreased MTTA/MTTR across all of our platforms. This is followed by deep log analysis that enables us to quickly and easily get to a preliminary root cause that someone on the infrastructure, platform or development teams can take and focus their attention on the precise target that Datadog revealed as the issue to be remediated.

What needs improvement?

The two areas I could see needing improvement or a feature to add value are building a more robust SIM that would include container scanning to rival other such products on the market so we do not need to extend functionality to another third-party provider. The other expands the alerting functions by creating a new feature to add direct SMS notifications, on-call rotation scheduling, etc., that could replace the need to have this as an external third party solution integration. 

For how long have I used the solution?

I've been a Datadog user for almost ten years.

What do I think about the stability of the solution?

Datadog is very stable, and we've only come across a few items that needed to be addressed quickly when there were issues.

What do I think about the scalability of the solution?

Scalability is very favorable, aside from cost/budget, which limits the scalability of this platform.

How are customer service and support?

Both customer service and support need a little work, as we have had a number of requests/issues that were not addressed as we needed them to be.

How would you rate customer service and support?

Neutral

Which solution did I use previously and why did I switch?

Being an Observability SME, I have used many native and third party solutions, including Dynatrace, New Relic, CloudWatch and Zabbix. As previously mentioned, Datadog provides a superior platform for centralizing and consolidating our Observability layer. Switching to Datadog was a no-brainer when most other solutions either didn't provide the maturity of functions, or have them available, at all.

How was the initial setup?

The initial setup was very straightforward, and the integrations were easily configured.

What about the implementation team?

We implemented Datadog in-house.

What was our ROI?

For the most part, Datadog's ROI is quite impressive when you consider all of the features and functions that are centralized on the platform. It doesn't require us to purchase additional third-party solutions to fill in the gaps.

What's my experience with pricing, setup cost, and licensing?

The setup was dead simple once the cloud integrations and agent components were identified and executed. Licensing falls into our normal third-party processes, so it was a familiar feeling when we started with Datadog. Cost is the only outlier when it comes to a perfect solution. Datadog is expensive, and each add-on drives that cost further into the realm of requiring justifications to finance expanding the core suite of features we would like to enable.

Which other solutions did I evaluate?

Yes, we evaluated several competing platforms that included Dynatrace, New Relic and Zabbix.

What other advice do I have?

They should provide more inclusive pricing, or an "all you can eat" tier that would include all relevant features, as opposed to individual cost increases to let Datadog to become more valuable and replace even more third-party solutions that have a lower cost of entry.

Which deployment model are you using for this solution?

Hybrid Cloud
Disclosure: I am a real user, and this review is based on my own experience and opinions.
Flag as inappropriate
PeerSpot user
Buyer's Guide
Datadog
December 2024
Learn what your peers think about Datadog. Get advice and tips from experienced pros sharing their opinions. Updated: December 2024.
825,399 professionals have used our research since 2012.
Michael Johnston1 - PeerSpot reviewer
Senior Software Engineer at angel Studios
Vendor
Top 20
A great tool with an easy setup and helpful error logs
Pros and Cons
  • "The setup cost was minimal."
  • "We did have an issue where a synthetic test was set up before the holiday break, and we were quickly charged a great amount. Our team worked with Datadog, and they were able to help us out since it was inadvertent on our end and was a user error."

What is our primary use case?

We currently have an error monitor to monitor errors on our prod environment.  Once we hit a certain threshold, we get an alert on Slack. This helps address issues the moment they happen before our users notice. 

We also utilize synthetic tests on many pages on our site. They're easy to set up and are great for pinpointing when a bug is shipped, but they may take down a less visited page that we aren't immediately aware of. It's a great extra check to make sure the code we ship is free of bugs.

How has it helped my organization?

The synthetic tests have been invaluable. We use them to check various pages and ensure functionality across multiple areas. Furthermore, our error monitoring alerts have been crucial in letting us know of problems the moment they pop up.  

Datadog has been a great tool, and all of our teams utilize many of its features.  We have regular mob sessions where we look at our Datadog error logs and see what we can address as a team. It's been great at providing more insight into our users and logging errors that can be fixed.

What is most valuable?

The error logs have been super helpful in breaking down issues affecting our users. Our monitors let us know once we hit a certain threshold as well, which is good for momentary blips and issues with third-party providers or rollouts that we have in the works. Just last week, we had a roll-out where various features were broken due to a change in our backend API. Our Datadog logs instantly notified us of the issues, and we could troubleshoot everything much more easily than just testing blind. This was crucial to a successful rollout.

What needs improvement?

I honestly can't think of anything that can be improved. We've started using more and more features from our Datadog account and are really grateful for all of the different ways we can track and monitor our site. 

We did have an issue where a synthetic test was set up before the holiday break, and we were quickly charged a great amount. Our team worked with Datadog, and they were able to help us out since it was inadvertent on our end and was a user error. That was greatly appreciated and something that helped start our relationship with the Datadog team.

For how long have I used the solution?

We've been using Datadog for several months. We started with the synthetic tests and now use It for error handling and in many other ways.

What do I think about the stability of the solution?

Stability has been great. We've had no issues so far.

What do I think about the scalability of the solution?

The solution is very easy to scale. We've used it on multiple clients.

How are customer service and support?

We had a dev who had set up a synthetic test that was running every five minutes in every single region over the holiday break last year. The Datadog team was great and very understanding and we were able to work this out with them.

How would you rate customer service and support?

Positive

Which solution did I use previously and why did I switch?

We didn't have any previous solution. At a previous company, I've used Sentry. However, I also find Datadog to be much easier, plus the inclusion of synthetic tests is awesome.

How was the initial setup?

The documentation was great and our setup was easy.

What about the implementation team?

We implemented the solution in-house.

What was our ROI?

This has had a great ROI as we've been able to address critical bugs that have been found via our Datadog tools.

What's my experience with pricing, setup cost, and licensing?

The setup cost was minimal. The documentation is great and the product is very easy to set up.

Which other solutions did I evaluate?

We also looked at other providers and settled on Datadog. It's been great to use across all our clients.

Which deployment model are you using for this solution?

Private Cloud
Disclosure: I am a real user, and this review is based on my own experience and opinions.
Flag as inappropriate
PeerSpot user
Delivery Manager, DBA Services at a manufacturing company with 10,001+ employees
Real User
Top 20
It combines tracing and logging in one tool
Pros and Cons
  • "Datadog provides tracing and logging, whereas Dynatrace focuses on tracing, and Splunk is more of a logging tool. Datadog's advantage is that we don't need two tools."
  • "Datadog isn't as mature as some of the established players like Dynatrace or Splunk. It's a new product, so they are constantly releasing new features, and I don't have much to complain about."

What is our primary use case?

We use Datadog for monitoring to get the traces and logs of all our applications. Datadog provides dashboard and alert capabilities to identify if something is wrong with various teams. More than 200 users, mostly software engineers, work with Datadog. 

What is most valuable?

Datadog provides tracing and logging, whereas Dynatrace focuses on tracing, and Splunk is more of a logging tool. Datadog's advantage is that we don't need two tools. 

What needs improvement?

Datadog isn't as mature as some of the established players like Dynatrace or Splunk. It's a new product, so they are constantly releasing new features, and I don't have much to complain about.

For how long have I used the solution?

We have used Datadog for seven months.

What do I think about the stability of the solution?

We haven't issued any issues so far, so it's a highly stable platform. 

What do I think about the scalability of the solution?

We are a unit within a much larger entity that is using Datadog. It can scale up to meet your needs. 

How are customer service and support?

We have regular calls with the Datadog team. They take feedback and bring in the product managers to quickly answer questions and fix issues. They help you deal with some of the issues you have with any new product, but Datadog is one of the fastest-growing products in the monitoring space.

How was the initial setup?

You don't need to install anything because it's a SaaS product with a web-based UI. They provide you the credentials to give you admin access. You only need to install the agents where you need monitoring. The time required to deploy the agent depends on what you're monitoring, but the solution itself works like Office 365 or any other SaaS product. 

Which deployment model are you using for this solution?

Public Cloud

If public cloud, private cloud, or hybrid cloud, which cloud provider do you use?

Amazon Web Services (AWS)
Disclosure: I am a real user, and this review is based on my own experience and opinions.
PeerSpot user
Lin Qui - PeerSpot reviewer
Works at Berkeley Research Group, LLC
User
Excellent APM, RUM and dashboards
Pros and Cons
  • "The pricing model makes more sense than what we paid for against other competitors."
  • "Logging is not a great experience."

What is our primary use case?

We use the solution for APM, anomaly detection, resource metrics, RUM, and synthetics. 

We use it to build baseline metrics for our apps before we start focusing in on performance improvements. A lot of times that’s looking at methods that take too long to run and diving into db queries and parsing.

I’ve used it in multiple configurations in aws and azure. I’ve built it using terraform and hand rolled. 

I’ve used it predominantly with Ruby and Node and a little bit of Python. 

How has it helped my organization?

The solution provides deep insights into our stack. It gives us the ability to measure and monitor before making decisions.

We're using it to make informed decisions about performance. Being able to show how across a timeline we increased performance from a release via a visual indication of p50+ metrics is almost magical. 

Another way we use it is for leading indicators of issues that might be happening. So for example, anomaly detection on gauge metrics across the app and having synthetics build in with alerting configurations are both ways we can get alerted sometimes even before a big issue is about to happen. 

What is most valuable?

The most valuable aspects include APM, RUM and dashboards. 

I think of Datadog as an analytics company first. And that the integrations around notifications and alerts as a part of insight discoverability. 

Everything Datadog offers for me is around knowledge building and how much do I know about the deep details of my stack.

The pricing model makes more sense than what we paid for against other competitors. I was at one job where we used two competing services because DD didn’t have BAA for APM. And then when it offered it, we immediately dumped the other solution for Datadog.

What needs improvement?

Logging is not a great experience. Searching for specific logs and then navigating around the context of the results is slow and cumbersome. Honestly that is my only gripe for Datadog. It’s a wonderful product outside of log searching. I have had better experience using other services that aggregate logs for search. 

My use case for it is around discoverability. Log search is fine if I’m just looking for something specific. That said, if it’s something else targeted and I am wandering around looking for possible issues, it’s really unintuitive. 

For how long have I used the solution?

I've used the solution for more than eight years.

What do I think about the stability of the solution?

Very stable. 

What about the implementation team?

We always implement the solution in-house. 

Which deployment model are you using for this solution?

Private Cloud
Disclosure: I am a real user, and this review is based on my own experience and opinions.
Flag as inappropriate
PeerSpot user
Senior Software Engineer at Clearstory.build
User
Top 10
Excellent for monitoring, analyzing, and optimizing performance
Pros and Cons
  • "Being able to filter requests by latency is invaluable, as it provides immediate insight into which endpoints require further analysis and optimization."
  • "The query performance could be improved, particularly when handling large datasets, as slower response times can hinder efficiency."

What is our primary use case?

Our primary use case for Datadog is monitoring, analyzing, and optimizing the performance and health of our applications and infrastructure. 

We leverage its logging, metrics, and tracing capabilities to pinpoint issues, track system performance, and improve overall reliability. Datadog’s ability to provide real-time insights and alerting on key metrics helps us quickly address issues, ensuring smooth operations. 

It’s integral for visibility across our microservices architecture and cloud environments.

How has it helped my organization?

Datadog has been incredibly valuable to our organization. Its ability to pinpoint warnings and errors in logs and provide detailed context is essential for troubleshooting. 

The platform's request tracing feature offers comprehensive insights into user flows, allowing us to quickly identify issues and optimize performance. 

Additionally, Datadog's real-time monitoring and alerting capabilities help us proactively manage system health, ensuring operational efficiency across our applications and infrastructure.

What is most valuable?

Being able to filter requests by latency is invaluable, as it provides immediate insight into which endpoints require further analysis and optimization. This feature helps us quickly identify performance bottlenecks and prioritize improvements. 

Additionally, the ability to filter requests by user email is extremely useful for tracking down user-specific issues faster. It streamlines the troubleshooting process and enables us to provide more targeted support to individual users, improving overall customer satisfaction.

What needs improvement?

The query performance could be improved, particularly when handling large datasets, as slower response times can hinder efficiency. Additionally, the interface can sometimes feel overwhelming, with so much happening at once, which may discourage users from exploring new features. Simplifying the layout or providing clearer guidance could enhance user experience. Any improvements related to query optimization would be highly beneficial, as it would further streamline workflows and boost productivity.

For how long have I used the solution?

I've used the solution for five years.

Disclosure: I am a real user, and this review is based on my own experience and opinions.
Flag as inappropriate
PeerSpot user
reviewer1974104 - PeerSpot reviewer
Software Engineering Manager at Finalsite
User
Top 10
Centralized pipeline with synthetic testing and a customized dashboard
Pros and Cons
  • "The ability to create custom dashboards has been incredibly useful, allowing us to visualize key metrics and KPIs in a way that makes sense for different teams and stakeholders."
  • "I spent longer than I should have figuring out how to correlate logs to traces, mostly related to environmental variables."

What is our primary use case?

Our primary use case is custom and vendor-supplied web application log aggregation, performance tracing and alerting. 

We run a mix of AWS EC2, Azure serverless, and colocated VMWare servers to support higher education web applications. Managing a hybrid multi-cloud solution across hundreds of applications is always a challenge. 

Datadog agents on each web host, and native integrations with GitHub, AWS, and Azure gets all of our instrumentation and error data in one place for easy analysis and monitoring.

How has it helped my organization?

Through the use of Datadog across all of our apps, we were able to consolidate a number of alerting and error-tracking apps, and Datadog ties them all together in cohesive dashboards. 

Whether the app is vendor-supplied or we built it ourselves, the depth of tracing, profiling, and hooking into logs is all obtainable and tunable. Both legacy .NET Framework and Windows Event Viewer and cutting-edge .NET Core with streaming logs all work. The breadth of coverage for any app type or situation is really incredible. It feels like there's nothing we can't monitor.

What is most valuable?

Centralized pipeline tracking and error logging provide a comprehensive view of our development and deployment processes, making it much easier to identify and resolve issues quickly. 

Synthetic testing has been a game-changer, allowing us to catch potential problems before they impact real users. Real user monitoring gives us invaluable insights into actual user experiences, helping us prioritize improvements where they matter most. 

The ability to create custom dashboards has been incredibly useful, allowing us to visualize key metrics and KPIs in a way that makes sense for different teams and stakeholders. 

These features form a powerful toolkit that helps us maintain high performance and reliability across our applications and infrastructure, ultimately leading to better user satisfaction and more efficient operations.

What needs improvement?

I'd like to see an expansion of the Android and IOS apps to have a simplified CI/CD pipeline history view. 

I like the idea of monitoring on the go, yet it seems the options are still a bit limited out of the box. While the documentation is very good considering all the frameworks and technology Datadog covers, there are areas - specifically .NET Profiling and Tracing of IIS-hosted apps - that need a lot of focus to pick up on the key details needed. 

In some cases the screenshots don't match the text as updates are made. I spent longer than I should have figuring out how to correlate logs to traces, mostly related to environmental variables.

For how long have I used the solution?

I've used the solution for about three years.

What do I think about the stability of the solution?

We have been impressed with the uptime and clean and light resource usage of the agents.

What do I think about the scalability of the solution?

The solution has been very scalable and customizable.

How are customer service and support?

Sales service is always helpful in tuning our committed costs and alerting us when we start spending outside the on-demand budget.

Which solution did I use previously and why did I switch?

We used a mix of a custom error email system, SolarWinds, UptimeRobot, and GitHub actions. We switched to find one platform that could give deep app visibility regardless of whether it is Linux or Windows or Container, cloud or on-prem hosted.

How was the initial setup?

Generally simple, but .NET Profiling of IIS and aligning logs to traces and profiles was a challenge.

What about the implementation team?

We implemented the solution in-house. 

What was our ROI?

I'd count our ROI as significant time saved by the development team assessing bugs and performance issues.

What's my experience with pricing, setup cost, and licensing?

Set up live trials to asses cost scaling. Small decisions around how monitors are used can have big impacts on cost scaling. 

Which other solutions did I evaluate?

NewRelic was considered. LogicMonitor was chosen over Datadog for our network and campus server management use cases.

What other advice do I have?

Excited to dig further into the new offerings around LLM and continue to grow our footprint in Datadog. 

Which deployment model are you using for this solution?

Hybrid Cloud

If public cloud, private cloud, or hybrid cloud, which cloud provider do you use?

Microsoft Azure
Disclosure: I am a real user, and this review is based on my own experience and opinions.
Flag as inappropriate
PeerSpot user
Senior Software Engineer at Clearstory.build
User
Top 10
Capable of pinpointing warnings and errors in logs and provide detailed context
Pros and Cons
  • "Being able to filter requests by latency is invaluable, as it provides immediate insight into which endpoints require further analysis and optimization."
  • "The query performance could be improved, particularly when handling large datasets, as slower response times can hinder efficiency."

What is our primary use case?

Our primary use case for Datadog is to monitor, analyze, and optimize the performance and health of our applications and infrastructure. 

We leverage its logging, metrics, and tracing capabilities to pinpoint issues, track system performance, and improve overall reliability. 

Datadog’s ability to provide real-time insights and alerting on key metrics helps us quickly address issues, ensuring smooth operations. It’s integral for visibility across our microservices architecture and cloud environments.

How has it helped my organization?

Datadog has been incredibly valuable to our organization. Its ability to pinpoint warnings and errors in logs and provide detailed context is essential for troubleshooting. 

The platform's request tracing feature offers comprehensive insights into user flows, allowing us to quickly identify issues and optimize performance. 

Additionally, Datadog's real-time monitoring and alerting capabilities help us proactively manage system health, ensuring operational efficiency across our applications and infrastructure.

What is most valuable?

Being able to filter requests by latency is invaluable, as it provides immediate insight into which endpoints require further analysis and optimization. This feature helps us quickly identify performance bottlenecks and prioritize improvements. 

Additionally, the ability to filter requests by user email is extremely useful for tracking down user-specific issues faster. It streamlines the troubleshooting process and enables us to provide more targeted support to individual users, improving overall customer satisfaction.

What needs improvement?

The query performance could be improved, particularly when handling large datasets, as slower response times can hinder efficiency. 

Additionally, the interface can sometimes feel overwhelming, with so much happening at once, which may discourage users from exploring new features. 

Simplifying the layout or providing clearer guidance could enhance user experience. Any improvements related to query optimization would be highly beneficial, as it would further streamline workflows and boost productivity.

For how long have I used the solution?

I've used the solution for five years.

Disclosure: I am a real user, and this review is based on my own experience and opinions.
Flag as inappropriate
PeerSpot user
Buyer's Guide
Download our free Datadog Report and get advice and tips from experienced pros sharing their opinions.
Updated: December 2024
Buyer's Guide
Download our free Datadog Report and get advice and tips from experienced pros sharing their opinions.