Try our new research platform with insights from 80,000+ expert users

Domino Data Science Platform vs H2O.ai comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Domino Data Science Platform
Ranking in Data Science Platforms
15th
Average Rating
7.6
Reviews Sentiment
6.7
Number of Reviews
2
Ranking in other categories
No ranking in other categories
H2O.ai
Ranking in Data Science Platforms
20th
Average Rating
7.6
Reviews Sentiment
7.2
Number of Reviews
8
Ranking in other categories
Model Monitoring (6th)
 

Mindshare comparison

As of January 2025, in the Data Science Platforms category, the mindshare of Domino Data Science Platform is 2.6%, down from 2.7% compared to the previous year. The mindshare of H2O.ai is 1.5%, down from 1.6% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

AS
Accelerated machine learning model development with seamless deployment
We used Domino Data Science Platform for developing and working with machine learning models. It facilitated end-to-end development processes. Domino is based on Git, enabling collaboration similar to using Git. Each user operates on their own equivalent of a branch or fork, and once finished, they…
Kashif Yaseen - PeerSpot reviewer
Plug-and-play convenience enhances productivity but needs better multimodal support
We mostly used the solution in the domain that I'm working. We had most of the use cases around chatbots and conversational BI The solution was plug-and-play, meaning most of the components were handled by the solution itself rather than building them from scratch. This was useful for our banking…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The workspaces, which are like wrappers of Docker containers, made it easy to start development environments using Domino."
"The scalability of the solution is good; I'd rate it four out of five."
"It is helpful, intuitive, and easy to use. The learning curve is not too steep."
"Fast training, memory-efficient DataFrame manipulation, well-documented, easy-to-use algorithms, ability to integrate with enterprise Java apps (through POJO/MOJO) are the main reasons why we switched from Spark to H2O."
"The most valuable feature of H2O.ai is that it is plug-and-play."
"The ease of use in connecting to our cluster machines."
"One of the most interesting features of the product is their driverless component. The driverless component allows you to test several different algorithms along with navigating you through choosing the best algorithm."
"The most valuable features are the machine learning tools, the support for Jupyter Notebooks, and the collaboration that allows you to share it across people."
"AutoML helps in hands-free initial evaluations of efficiency/accuracy of ML algorithms."
 

Cons

"The predictive analysis feature needs improvement."
"The deployment of large language models (LLMs) could be improved."
"The model management features could be improved."
"Referring to bullet-3 as well, H2O DataFrame manipulation capabilities are too primitive."
"It lacks the data manipulation capabilities of R and Pandas DataFrames. We would kill for dplyr offloading H2O."
"The interpretability module has room for improvement. Also, it needs to improve its ability to integrate with other systems, like SageMaker, and the overall integration capability."
"H2O.ai can improve in areas like multimodal support and prompt engineering."
"It needs a drag and drop GUI like KNIME, for easy access to and visibility of workflows."
"On the topic of model training and model governance, this solution cannot handle ten or twelve models running at the same time."
"I would like to see more features related to deployment."
 

Pricing and Cost Advice

Information not available
"We have seen significant ROI where we were able to use the product in certain key projects and could automate a lot of processes. We were even able to reduce staff."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
831,265 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
33%
Manufacturing Company
11%
Insurance Company
10%
Computer Software Company
7%
Financial Services Firm
21%
Computer Software Company
11%
Manufacturing Company
10%
Energy/Utilities Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What needs improvement with Domino Data Science Platform?
The deployment of large language models (LLMs) could be improved. Currently, Domino provides a simple server that cannot handle big deployments, which is not suitable for LLMs.
What is your primary use case for Domino Data Science Platform?
We used Domino Data Science Platform for developing and working with machine learning models. It facilitated end-to-end development processes. Domino is based on Git, enabling collaboration similar...
What advice do you have for others considering Domino Data Science Platform?
It's important to have a DevOps team well-versed with cloud-native solutions to manage Domino effectively. Relying solely on data scientists might not be sufficient. I'd rate the solution eight out...
What needs improvement with H2O.ai?
H2O.ai can improve in areas like multimodal support and prompt engineering. They are already working on updates and changes. Although I haven't explored all the new products they've added to their ...
What is your primary use case for H2O.ai?
We mostly used the solution in the domain that I'm working. We had most of the use cases around chatbots and conversational BI.
What advice do you have for others considering H2O.ai?
It is important to address data privacy concerns and ensure you're choosing the right vendor that meets your use case demands. Also, you may leave my name, Kashif, but please keep the company name ...
 

Also Known As

Domino Data Lab Platform
No data available
 

Learn More

Video not available
 

Interactive Demo

Demo not available
 

Overview

 

Sample Customers

Allstate, GSK, AstraZeneca, Federal Reserve, US Navy, Bristol Myers Squibb, Bayer, BNP Paribas, Moodys, New York Life
poder.io, Stanley Black & Decker, G5, PWC, Comcast, Cisco
Find out what your peers are saying about Domino Data Science Platform vs. H2O.ai and other solutions. Updated: January 2025.
831,265 professionals have used our research since 2012.