The most valuable aspect is the AI training model, which distinguishes itself by offering a more transparent and controllable approach compared to other products on the market. Unlike some alternatives, this model allows precise retraining of machine learning instances. It provides visibility into the training process, enabling control and the option to retrain multiple times as necessary. In contrast to comparable products, this transparency and control contribute to enhancing the precision of the training model. Forms AI performs admirably, posing as a strong competitor to Microsoft's PowerApps and other similar products in the market. It is straightforward and versatile, yet there is room for enhancement in certain design features that could improve user experience. Document Understanding seamlessly integrates with other systems and applications within the environment it operates. Its integration capabilities extend beyond RPA modules, ensuring smooth and trouble-free connections with various components. Human validation is required for Document Understanding at the beginning of Document automation journey, constituting around thirty percent of the overall process, while the tool handles the remaining seventy percent and document straight through processing improver further with model retraining. Notably, the retraining feature is a crucial and valuable aspect of the platform. This feature allows for retraining based on the validation actions performed by human validators. This is particularly significant because it enables refinement of the model in cases where documents are validated with low confidence. Some of the platforms lack the capability to provide confidence levels for field and data recognition, making this retraining feature a valuable asset for businesses seeking precision and efficiency in document processing. The human validation process for each document typically takes only a couple of seconds. The validation requirements are easily identifiable, allowing you to point to the specific area. Typically, pointing to it triggers a quick refocus of recognition to a different part, making the validation process efficient and straightforward. The average handle time before implementing Document Understanding was approximately between three to five minutes, but after automation, it has significantly reduced to less than a minute, possibly even just a couple of seconds. This improvement covers the entire process, including validation, data exchange, mailing approvals, and more, all seamlessly happening in the background. Beyond the time savings, the automation also substantially reduces rework caused by human errors, enhancing the overall efficiency and accuracy of the process. As per the customer, errors do occur at times, and the associated risk is considerably high. However, the implementation of Document Understanding effectively mitigates this risk, eliminating the potential for errors.