Try our new research platform with insights from 80,000+ expert users

Google Vertex AI vs Replicate comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Vertex AI
Ranking in AI Development Platforms
2nd
Average Rating
8.4
Reviews Sentiment
7.4
Number of Reviews
10
Ranking in other categories
AI Infrastructure (1st)
Replicate
Ranking in AI Development Platforms
10th
Average Rating
8.0
Reviews Sentiment
5.4
Number of Reviews
1
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of January 2025, in the AI Development Platforms category, the mindshare of Google Vertex AI is 18.8%, up from 17.9% compared to the previous year. The mindshare of Replicate is 10.1%, up from 0.1% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

Serge Dahdouh - PeerSpot reviewer
A user-friendly platform that automatizes machine learning techniques with minimal effort
We work with clients who request the implementation of a certain document into a chatbot. Because of the limited knowledge of AI, our task is to link that file to the ML and provide a platform that can work as a customer service. We previously used LangChain Phython, but now it is done through Vertex AI.
reviewer2386686 - PeerSpot reviewer
Easy to use and good for disaster recovery planning
I use the tool for real-time data synchronization. Replicate is a beneficial tool for disaster recovery planning. The use cases attached to Replicate are very direct. I have used other products in the past, but they are not as efficient as Replicate. I feel Replicate is easier to use than other tools. Replicate has impacted our company's data integration processes by twenty to thirty percent. Overall, the product is easy to use. The product was also easy to configure. I recommend the product to others who plan to use it for real-time data integration. The product has been integrated into our company's existing infrastructure. I haven't done the integrations but I know that it was performed by someone else. I rate the tool an eight and a half out of ten.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The monitoring feature is a true life-saver for data scientists. I give it a ten out of ten."
"Vertex AI possesses multiple libraries, so it eliminates the need for extensive coding."
"The most valuable features of the solution are that it is quite flexible, and some of the services are almost low-code, with no-code services, so it gives agents flexibility to build the use cases according to the operational needs."
"Vertex comes with inbuilt integration with GCP for data storage."
"The integration of AutoML features streamlines our machine-learning workflows."
"We extensively utilize Google Cloud's Vertex AI platform for our machine learning workflows. Specifically, we leverage the IO branch for EDA data in Suresh Live Virtual, employing Forte IT for training machine learning models. The AI model registry in Vertex AI is crucial for cataloging and managing various versions of the models we develop. When it comes to deploying models, we rely on Google Cloud's AI Prediction service, seamlessly integrating it into our workflow for real-time predictions or streaming. For monitoring and tracking the outcomes of model development, we employ Vertex AI Monitoring, ensuring a comprehensive understanding of the model's performance and results. This integrated approach within Vertex AI provides a unified platform for managing, deploying, and monitoring machine learning models efficiently."
"Google Vertex AI is an out-of-the-box and very easy-to-use solution."
"The most valuable feature we've found is the model garden, which allows us to deploy and use various models through the provided endpoints easily."
"Replicate is a beneficial tool for disaster recovery planning."
 

Cons

"I've noticed that using chat activity often presents a broader range of options and insights for a well-constructed question. Improving the knowledge base could be a key aspect for enhancement—expanding the information sources to enhance the generation process."
"Google Vertex AI is good in machine learning and AI, but it lacks optimization."
"I believe that Vertex AI is a robust platform, but its effectiveness depends significantly on the domain knowledge of the developer using it. While Vertex AI does offer support through the console UI in the Google Cloud environment, it is better suited for technical members who have a deeper understanding of machine learning concepts. The platform may be challenging for business process developers (BPDUs) who lack extensive technical knowledge, as it involves intricate customization and handling numerous parameters. Effectively utilizing Vertex AI requires not only familiarity with machine learning frameworks like TensorFlow or PyTorch but also a proficiency in Python programming. The complexity of these requirements might pose challenges for less technically oriented users, making it crucial to have a solid foundation in both machine learning principles and Python coding to extract the full value from Vertex AI. It would be beneficial to have a streamlined process where we can leverage the capabilities of Vertex AI directly through the BigQuery UI. This could involve functionalities such as creating machine learning models within the BigQuery UI, providing a more user-friendly and integrated experience. This would allow users to access and analyze data from BigQuery while simultaneously utilizing Vertex AI to build machine learning models, fostering a more cohesive and efficient workflow."
"I'm not sure if I have suggestions for improvement."
"It would be beneficial to have certain features included in the future, such as image generators and text-to-speech solutions."
"The tool's documentation is not good. It is hard."
"The solution is stable, but it is quite slow. Maybe my data is too large, but I think that Google could improve Vertex AI's training time."
"Both major systems, Azure and Google, are not yet stabilized, especially their customer support."
"I feel that the marketing activities of the product are an area of concern...Replicate is a very beneficial tool that should be marketed well enough in a good way."
 

Pricing and Cost Advice

"The price structure is very clear"
"The solution's pricing is moderate."
"I think almost every tool offers a decent discount. In terms of credits or other stuff, every cloud provider provides a good number of incentives to onboard new clients."
"The Versa AI offers attractive pricing. With this pricing structure, I can leverage various opportunities to bring value to my business. It's a positive aspect worth considering."
Information not available
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
831,265 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
13%
Computer Software Company
13%
Manufacturing Company
9%
Retailer
7%
Computer Software Company
15%
University
11%
Educational Organization
11%
Comms Service Provider
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about Google Vertex AI?
We extensively utilize Google Cloud's Vertex AI platform for our machine learning workflows. Specifically, we leverage the IO branch for EDA data in Suresh Live Virtual, employing Forte IT for trai...
What is your experience regarding pricing and costs for Google Vertex AI?
They have different pricing models like pay-as-you-go or subscription model, and total cost of ownership. It is comparatively cheaper than Azure.
What needs improvement with Google Vertex AI?
I'm not sure if I have suggestions for improvement. Based on my comparison between the two, Vertex has various additional functionalities that Azure doesn't provide.
What do you like most about Replicate?
Replicate is a beneficial tool for disaster recovery planning.
What needs improvement with Replicate?
I feel that the marketing activities of the product are an area of concern that needs to be taken care of from an improvement perspective. Replication was a tool that my company had never heard of,...
What is your primary use case for Replicate?
Basically, I came across Replicate while searching for an open-source LLM model. Regarding my use case, from a prompt I want to generate an output response token of 25k tokens driver, but currently...
 

Learn More

Video not available
 

Overview

Find out what your peers are saying about Microsoft, Google, Amazon Web Services (AWS) and others in AI Development Platforms. Updated: January 2025.
831,265 professionals have used our research since 2012.