Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs SAS Enterprise Miner comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in Data Science Platforms
2nd
Average Rating
7.8
Reviews Sentiment
7.0
Number of Reviews
38
Ranking in other categories
AI Development Platforms (4th)
SAS Enterprise Miner
Ranking in Data Science Platforms
23rd
Average Rating
7.6
Reviews Sentiment
6.2
Number of Reviews
13
Ranking in other categories
Data Mining (7th)
 

Mindshare comparison

As of January 2026, in the Data Science Platforms category, the mindshare of Amazon SageMaker is 4.6%, down from 7.6% compared to the previous year. The mindshare of SAS Enterprise Miner is 1.6%, up from 0.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
Amazon SageMaker4.6%
SAS Enterprise Miner1.6%
Other93.8%
Data Science Platforms
 

Featured Reviews

Saurabh Jaiswal - PeerSpot reviewer
Python AWS & AI Expert at a tech consulting company
Create innovative assistants with seamless data integration for large-scale projects
The various integration options available in Amazon SageMaker, such as Firehose for connecting to data pipelines, are simple to use. Tools like AWS Glue integrate well for data transformations. The Databricks integration aids data scientists and engineers. SageMaker is fully managed, offers high availability, flexibility with TensorFlow, PyTorch, and MXNet, and comes with pre-trained algorithms for forecasting, anomaly detection, and more.
reviewer1352853 - PeerSpot reviewer
Executive Head of analytics at a retailer with 5,001-10,000 employees
A stable product that is easy to deploy and can be used for structured and unstructured data mining
We use the solution for predictive analytics to do structured and unstructured data mining I like the way the product visually shows the data pipeline. The product must provide better integration with cloud-native technologies. I have been using the solution for 20 years. The product is very…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The tool makes our ML model development a bit more efficient because everything is in one environment."
"I appreciate the ease of use in Amazon SageMaker."
"One of the most valuable features of Amazon SageMaker for me is the one-touch deployment, which simplifies the process greatly."
"Amazon SageMaker is highly valuable for managing ML workloads. It connects to AWS cloud resources, making it easy to deploy algorithms and collaborate using tools like GitLab. It offers a wide range of Python libraries and other necessary tools for modelling and algorithms."
"The technical support from AWS is excellent."
"The few projects we have done have been promising."
"The evolution from SageMaker Classic to SageMaker Studio, particularly the UI part of Studio, is commendable."
"The most valuable feature of Amazon SageMaker for me is the model deployment service."
"The technical support is very good."
"The solution is able to handle quite large amounts of data beautifully."
"The solution is very good for data mining or any mining issues."
"The most valuable feature is the decision tree creation."
"he solution is scalable."
"Good data management and analytics."
"The setup is straightforward. Deployment doesn't take more than 30 minutes."
"Most of the features, especially on the data analysis tool pack, are really good. The way they do clustering and output is great. You can do fairly elaborate outputs. The results, the ensembles, all of these, are fantastic."
 

Cons

"I would recommend having more walkthrough videos and articles beyond AWS Skill Builder."
"Improvements are needed in terms of complexity, data security, and access policy integration in Amazon SageMaker."
"The solution is complex to use."
"When starting a new session, the waiting time can be quite long, ranging from two to five minutes."
"The training modules could be enhanced. We had to take in-person training to fully understand SageMaker, and while the trainers were great, I think more comprehensive online modules would be helpful."
"The solution requires a lot of data to train the model."
"AI is a new area and AWS needs to have an internship training program available."
"The pricing of the solution is an issue...In SageMaker, monitoring could be improved by supporting more data types other than JSON and CSV."
"While I don't personally need tutorials, I can't say that it wouldn't be helpful for others to have some to help them navigate and operate the system."
"The ease of use can be improved. When you are new it seems a bit complex."
"The product must provide better integration with cloud-native technologies."
"The solution is much more complex than other options."
"The visualization of the models is not very attractive, so the graphics should be improved."
"The user interface of the solution needs improvement. It needs to be more visual."
"The solution is very stable, but we do have some problems with discrepancies involving SAS not matching with the latest Java versions. It's not stable in cases where SAS tries to run on a different version because SAS doesn't connect with the latest Java update. Once a month we need to restart systems from scratch."
"Technical support could be improved."
 

Pricing and Cost Advice

"The solution is relatively cheaper."
"I rate the pricing a five on a scale of one to ten, where one is the lowest price, and ten is the highest price. The solution is priced reasonably. There is no additional cost to be paid in excess of the standard licensing fees."
"SageMaker is worth the money for our use case."
"The support costs are 10% of the Amazon fees and it comes by default."
"I would rate the solution's price a ten out of ten since it is very high."
"The pricing is comparable."
"On a scale from one to ten, where one is cheap, and ten is expensive, I rate the solution's pricing a six out of ten."
"The tool's pricing is reasonable."
"This solution is for large corporations because not everybody can afford it."
"The solution must improve its licensing models."
"The solution is expensive for an individual, but for an enterprise/institution (purchasing bulk licenses), it is not a high price for the use that will come from it."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
881,114 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Computer Software Company
10%
Manufacturing Company
9%
University
6%
Financial Services Firm
25%
Educational Organization
11%
Manufacturing Company
10%
University
9%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business12
Midsize Enterprise11
Large Enterprise17
By reviewers
Company SizeCount
Small Business3
Midsize Enterprise4
Large Enterprise7
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
If you manage it effectively, their pricing is reasonable. It's similar to anything in the cloud; if you don't manage it properly, it can be expensive, but if you do, it's fine.
Ask a question
Earn 20 points
 

Also Known As

AWS SageMaker, SageMaker
Enterprise Miner
 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
Generali Hellas, Gitanjali Group, Gloucestershire Constabulary, GS Home Shopping, HealthPartners, IAG New Zealand, iJET, Invacare
Find out what your peers are saying about Amazon SageMaker vs. SAS Enterprise Miner and other solutions. Updated: December 2025.
881,114 professionals have used our research since 2012.