Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs SAS Enterprise Miner comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in Data Science Platforms
2nd
Average Rating
7.8
Reviews Sentiment
7.0
Number of Reviews
38
Ranking in other categories
AI Development Platforms (4th)
SAS Enterprise Miner
Ranking in Data Science Platforms
23rd
Average Rating
7.6
Reviews Sentiment
6.2
Number of Reviews
13
Ranking in other categories
Data Mining (7th)
 

Mindshare comparison

As of January 2026, in the Data Science Platforms category, the mindshare of Amazon SageMaker is 4.6%, down from 7.6% compared to the previous year. The mindshare of SAS Enterprise Miner is 1.6%, up from 0.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
Amazon SageMaker4.6%
SAS Enterprise Miner1.6%
Other93.8%
Data Science Platforms
 

Featured Reviews

Saurabh Jaiswal - PeerSpot reviewer
Python AWS & AI Expert at a tech consulting company
Create innovative assistants with seamless data integration for large-scale projects
The various integration options available in Amazon SageMaker, such as Firehose for connecting to data pipelines, are simple to use. Tools like AWS Glue integrate well for data transformations. The Databricks integration aids data scientists and engineers. SageMaker is fully managed, offers high availability, flexibility with TensorFlow, PyTorch, and MXNet, and comes with pre-trained algorithms for forecasting, anomaly detection, and more.
reviewer1352853 - PeerSpot reviewer
Executive Head of analytics at a retailer with 5,001-10,000 employees
A stable product that is easy to deploy and can be used for structured and unstructured data mining
We use the solution for predictive analytics to do structured and unstructured data mining I like the way the product visually shows the data pipeline. The product must provide better integration with cloud-native technologies. I have been using the solution for 20 years. The product is very…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"SageMaker offers functionalities like Jupyter Notebooks for development, built-in algorithms, model tuning, and options to deploy models on managed infrastructure."
"SageMaker supports building, training, and deploying AI models from scratch, which is crucial for my ML project."
"The technical support from AWS is excellent."
"We were able to use the product to automate processes."
"They offer insights into everyone making calls in my organization."
"One of the most valuable features of Amazon SageMaker for me is the one-touch deployment, which simplifies the process greatly."
"We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for these models, making accessing them convenient as needed."
"I recommend SageMaker for ML projects if you need to build models from scratch."
"The most valuable feature is the decision tree creation."
"Good data management and analytics."
"I like the way the product visually shows the data pipeline."
"he solution is scalable."
"I found the ease of use of the solution the most valuable. Additionally, other valuable features include: the user interface, power to extract data, compatibility with other technologies (specifically with PS400), and automation of several tasks."
"The solution is able to handle quite large amounts of data beautifully."
"The setup is straightforward. Deployment doesn't take more than 30 minutes."
"The solution is very good for data mining or any mining issues."
 

Cons

"Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker. This would empower citizen data scientists to utilize the tool more effectively since many data scientists do not have a core development background."
"The payment and monitoring metrics are a bit confusing not only for Amazon SageMaker but also for the range of other products that fall under AWS, especially for a new user of the product."
"In my opinion, one improvement for Amazon SageMaker would be to offer serverless GPUs. Currently, we incur costs on an hourly basis. It would be beneficial if the tool could provide pay-as-you-go pricing based on endpoints."
"When starting a new session, the waiting time can be quite long, ranging from two to five minutes."
"I had to create custom templates for labeling multi-data sets, such as text and images, which was time-consuming."
"AI is a new area and AWS needs to have an internship training program available."
"The main challenge with Amazon SageMaker is the integrations."
"Creating notebook instances for multiple users is pretty expensive in Amazon SageMaker."
"The solution needs an easier interface for the user. The user experience isn't so easy for our clients."
"The ease of use can be improved. When you are new it seems a bit complex."
"The user interface of the solution needs improvement. It needs to be more visual."
"The solution is much more complex than other options."
"The product must provide better integration with cloud-native technologies."
"Virtualization could be much better."
"The initial setup is challenging if doing it for the first time."
"Technical support could be improved."
 

Pricing and Cost Advice

"On a scale from one to ten, where one is cheap, and ten is expensive, I rate the solution's pricing a six out of ten."
"I would rate the solution's price a ten out of ten since it is very high."
"The pricing could be better, especially for querying. The per-query model feels expensive."
"The product is expensive."
"There is no license required for the solution since you can use it on demand."
"The support costs are 10% of the Amazon fees and it comes by default."
"Amazon SageMaker is a very expensive product."
"You don't pay for Sagemaker. You only pay for the compute instances in your storage."
"This solution is for large corporations because not everybody can afford it."
"The solution must improve its licensing models."
"The solution is expensive for an individual, but for an enterprise/institution (purchasing bulk licenses), it is not a high price for the use that will come from it."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
879,889 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Computer Software Company
11%
Manufacturing Company
9%
University
6%
Financial Services Firm
26%
Educational Organization
10%
Manufacturing Company
10%
University
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business12
Midsize Enterprise11
Large Enterprise16
By reviewers
Company SizeCount
Small Business3
Midsize Enterprise4
Large Enterprise7
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
If you manage it effectively, their pricing is reasonable. It's similar to anything in the cloud; if you don't manage it properly, it can be expensive, but if you do, it's fine.
Ask a question
Earn 20 points
 

Also Known As

AWS SageMaker, SageMaker
Enterprise Miner
 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
Generali Hellas, Gitanjali Group, Gloucestershire Constabulary, GS Home Shopping, HealthPartners, IAG New Zealand, iJET, Invacare
Find out what your peers are saying about Amazon SageMaker vs. SAS Enterprise Miner and other solutions. Updated: December 2025.
879,889 professionals have used our research since 2012.