Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs SAS Enterprise Miner comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in Data Science Platforms
2nd
Average Rating
7.8
Reviews Sentiment
7.0
Number of Reviews
38
Ranking in other categories
AI Development Platforms (4th)
SAS Enterprise Miner
Ranking in Data Science Platforms
24th
Average Rating
7.6
Reviews Sentiment
6.2
Number of Reviews
13
Ranking in other categories
Data Mining (7th)
 

Mindshare comparison

As of February 2026, in the Data Science Platforms category, the mindshare of Amazon SageMaker is 4.3%, down from 7.6% compared to the previous year. The mindshare of SAS Enterprise Miner is 1.6%, up from 0.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
Amazon SageMaker4.3%
SAS Enterprise Miner1.6%
Other94.1%
Data Science Platforms
 

Featured Reviews

Saurabh Jaiswal - PeerSpot reviewer
Python AWS & AI Expert at a tech consulting company
Create innovative assistants with seamless data integration for large-scale projects
The various integration options available in Amazon SageMaker, such as Firehose for connecting to data pipelines, are simple to use. Tools like AWS Glue integrate well for data transformations. The Databricks integration aids data scientists and engineers. SageMaker is fully managed, offers high availability, flexibility with TensorFlow, PyTorch, and MXNet, and comes with pre-trained algorithms for forecasting, anomaly detection, and more.
reviewer1352853 - PeerSpot reviewer
Executive Head of analytics at a retailer with 5,001-10,000 employees
A stable product that is easy to deploy and can be used for structured and unstructured data mining
We use the solution for predictive analytics to do structured and unstructured data mining I like the way the product visually shows the data pipeline. The product must provide better integration with cloud-native technologies. I have been using the solution for 20 years. The product is very…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The tool has made client management easier where patients need to upload their health records and we can use the tool to understand details on treatment date, amount, etc."
"Feature Store, CodeCommit, versioning, model control, and CI/CD pipelines are the most valuable features in Amazon SageMaker."
"The superb thing that SageMaker brings is that it wraps everything well. It's got the deployment, the whole framework."
"The tool makes our ML model development a bit more efficient because everything is in one environment."
"The solution's ability to improve work at my organization stems from the ensemble model and a combination of various models it provides."
"The tangible benefits we have observed from using Amazon SageMaker include improved time to insight and generally the common stack that is easier to support over time."
"We were able to use the product to automate processes."
"The technical support from AWS is excellent."
"I found the ease of use of the solution the most valuable. Additionally, other valuable features include: the user interface, power to extract data, compatibility with other technologies (specifically with PS400), and automation of several tasks."
"The setup is straightforward. Deployment doesn't take more than 30 minutes."
"he solution is scalable."
"I like the way the product visually shows the data pipeline."
"Good data management and analytics."
"Most of the features, especially on the data analysis tool pack, are really good. The way they do clustering and output is great. You can do fairly elaborate outputs. The results, the ensembles, all of these, are fantastic."
"The solution is able to handle quite large amounts of data beautifully."
"The most valuable feature is the decision tree creation."
 

Cons

"The dashboard could be improved by including more features and providing more information about deployed models, their drift, performance, scaling, and customization options."
"One area where Amazon SageMaker could improve is its pricing. The high costs can drive companies to explore other cloud options. Additionally, while generally good, the updates sometimes come with bugs, and the documentation could be much better. More examples and clearer guidance would be helpful."
"Amazon SageMaker can make it simpler to manage the data flow from start to finish, such as by integrating data, usingthe machine, and deploying models. This process could be more user-friendly compared to other tools. I would also like to improve integration with Bedrock and the LLM connection for AWS."
"Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker. This would empower citizen data scientists to utilize the tool more effectively since many data scientists do not have a core development background."
"The platform could be more accessible to users with basic coding skills, making it more intuitive and easier for beginners to use comfortably."
"The solution requires a lot of data to train the model."
"The training modules could be enhanced. We had to take in-person training to fully understand SageMaker, and while the trainers were great, I think more comprehensive online modules would be helpful."
"The main challenge with Amazon SageMaker is the integrations."
"Technical support could be improved."
"Virtualization could be much better."
"The ease of use can be improved. When you are new it seems a bit complex."
"The solution is very stable, but we do have some problems with discrepancies involving SAS not matching with the latest Java versions. It's not stable in cases where SAS tries to run on a different version because SAS doesn't connect with the latest Java update. Once a month we need to restart systems from scratch."
"The solution needs an easier interface for the user. The user experience isn't so easy for our clients."
"The initial setup is challenging if doing it for the first time."
"The solution is much more complex than other options."
"While I don't personally need tutorials, I can't say that it wouldn't be helpful for others to have some to help them navigate and operate the system."
 

Pricing and Cost Advice

"The cost offers a pay-as-you-go pricing model. It depends on the instance that you do."
"On a scale from one to ten, where one is cheap, and ten is expensive, I rate the solution's pricing a six out of ten."
"The pricing is comparable."
"There is no license required for the solution since you can use it on demand."
"The support costs are 10% of the Amazon fees and it comes by default."
"The product is expensive."
"The pricing is complicated as it is based on what kind of machines you are using, the type of storage, and the kind of computation."
"The pricing could be better, especially for querying. The per-query model feels expensive."
"The solution is expensive for an individual, but for an enterprise/institution (purchasing bulk licenses), it is not a high price for the use that will come from it."
"This solution is for large corporations because not everybody can afford it."
"The solution must improve its licensing models."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
881,565 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Computer Software Company
10%
Manufacturing Company
9%
University
6%
Financial Services Firm
24%
Educational Organization
11%
Manufacturing Company
10%
University
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business12
Midsize Enterprise11
Large Enterprise17
By reviewers
Company SizeCount
Small Business3
Midsize Enterprise4
Large Enterprise7
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
If you manage it effectively, their pricing is reasonable. It's similar to anything in the cloud; if you don't manage it properly, it can be expensive, but if you do, it's fine.
Ask a question
Earn 20 points
 

Also Known As

AWS SageMaker, SageMaker
Enterprise Miner
 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
Generali Hellas, Gitanjali Group, Gloucestershire Constabulary, GS Home Shopping, HealthPartners, IAG New Zealand, iJET, Invacare
Find out what your peers are saying about Amazon SageMaker vs. SAS Enterprise Miner and other solutions. Updated: December 2025.
881,565 professionals have used our research since 2012.