Try our new research platform with insights from 80,000+ expert users

Dataiku vs Starburst Enterprise comparison

Sponsored
 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024
 

Categories and Ranking

IBM SPSS Statistics
Sponsored
Ranking in Data Science Platforms
9th
Average Rating
8.0
Reviews Sentiment
6.9
Number of Reviews
37
Ranking in other categories
Data Mining (3rd)
Dataiku
Ranking in Data Science Platforms
7th
Average Rating
8.0
Reviews Sentiment
7.2
Number of Reviews
8
Ranking in other categories
No ranking in other categories
Starburst Enterprise
Ranking in Data Science Platforms
14th
Average Rating
8.6
Reviews Sentiment
6.9
Number of Reviews
2
Ranking in other categories
Streaming Analytics (12th)
 

Mindshare comparison

As of December 2024, in the Data Science Platforms category, the mindshare of IBM SPSS Statistics is 2.7%, up from 2.7% compared to the previous year. The mindshare of Dataiku is 11.8%, up from 7.6% compared to the previous year. The mindshare of Starburst Enterprise is 2.1%, up from 1.6% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Md Masudul Hassan - PeerSpot reviewer
Comprehensive data analysis capabilities with a user-friendly interface, providing an efficient and reliable platform for researchers and analysts
I believe that offering short-term SPSS licenses, perhaps when customer sourcing is available, could make it more affordable. These licenses shouldn't include features tailored for universities or large sales organizations. Instead, they could offer discounts or additional facilities for smaller entities to access the software. In developing countries, it would be beneficial to provide certain features to users at no cost initially, while also customizing pricing options. For example, offering basic features to the first hundred users can help them become familiar with the software and its capabilities. This approach encourages users to upgrade to higher tiers as they become more experienced and require additional functionality.
Sabrine Bendimerad - PeerSpot reviewer
Saves a lot of time because I can quickly handle all the data preparation tasks and concentrate on building my machine learning algorithms
One of the main challenges was collaboration. Developers typically use GitHub to push and manage code, but integrating GitHub with Dataiku was complicated. While it was theoretically possible to use GitHub with Dataiku, in practice, it was difficult to manage our code effectively and push it from Dataiku to GitHub. Another limitation was its ability to handle different types of data. While Dataiku is powerful for working with structured data, like regular or geospatial data, it struggled with more complex data types such as text and image. In addition to the challenges with GitHub integration, the limited support for diverse data types was another feature lacking at that time.
KamleshPant - PeerSpot reviewer
Connects to any data source from any region and offers unified access
There are no specific projects supported by Starburst regarding AI initiatives or machine learning projects. In the future, if we have all the data available, we can definitely capitalize on AI/ML and LLM capabilities to summarize data and gain insights. That's our future goal, but we haven't reached that point yet. There should be support for REST API data sources to access data from the web. We often have data coming in and communicate with data sources via REST API calls. I don't see that capability in Starburst currently; everything is through JDBC or ODBC. If Starburst could seamlessly access data using REST API capabilities, it would be a game-changer. The self-service data management features, like self-service materialized views, are great, but they can be a bit complex for basic users to understand.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most valuable feature of IBM SPSS Statistics is all the functionality it provides. Additionally, it is simple to do the five-way analysis that you can into multidimensional setup space. It's the multidimensional space facility that is most useful."
"in terms of the simplicity, I think the SPSS basic can handle it."
"You can find a complete algorithm in the solution and use it. You don't need to write your own algorithms for predictive analytics. That's the most valuable feature and the main one we use."
"It has helped our analyst unit deliver work with more transparency and confidence, given that we can always view the dataset in totality, after each step of data transformation."
"One feature I found very valuable was the analysis of variance (ANOVA)."
"Since we are using the software as a statistical tool, I would say the best aspects of it are the regression and segmentation capabilities. That said, I've used it for all sorts of things."
"The solution has numerous valuable features. We particularly like custom tabs. It's very useful. We end up analyzing a lot of software data, so features related to custom tabs are really helpful."
"Capability analysis is one of the main and valuable functions. We also do some hypothesis testing in Minitab and summary stats. These are the functions that we find very useful."
"Cloud-based process run helps in not keeping the systems on while processes are running."
"I like the interface, which is probably my favorite part of the solution. It is really user-friendly for an IT person."
"The most valuable feature of this solution is that it is one tool that can do everything, and you have the ability to very easily push your design to prediction."
"The solution is quite stable."
"Extremely easy to use with its GUI-based functionality and large compatibility with various data sources. Also, maintenance processes are much more automated than ever, with fewer errors."
"Data Science Studio's data science model is very useful."
"The advantage is that you can focus on machine learning while having access to what they call 'recipes.' These recipes allow me to preprocess and prepare data without writing any code."
"The most valuable feature is the set of visual data preparation tools."
"It's very scalable, fast performing, and supports many catalogs."
"We have noticed improvements in performance using Starburst Enterprise. It handles complex data, including reading and partitioning files. We can add a new catalog to Starburst Enterprise by providing connection details and service account information. This allows us to integrate with existing tools, such as the Snowflake database, which we use for data protection in our project."
 

Cons

"This solution is not suitable for use with Big Data."
"If there is any self-generation data collection plan (DCP), it would be helpful in gathering data. It would also be useful if there is a function to scale it up to, let's say, UiPath and have it consolidate and integrate into a UiPath solution."
"It would be helpful if there was better documentation on how to properly use the solution. A beginner's guide on how to use the various programming functions within the product would be so useful to a lot of people. I found that everything was very confusing at first. Having clear documentation would help alleviate that."
"I think the visualization and charting should be changed and made easier and more effective."
"IBM SPSS Statistics could improve the visual outputs where you are producing, for example, a graph for a company board of directors, or an advert."
"I'd like to see them use more artificial intelligence. It should be smart enough to do predictions and everything based on what you input."
"The statistics should be more self-explanatory with detailed automated reports."
"The solution needs to improve forecasting using time series analysis."
"In the next release of this solution, I would like to see deep learning better integrated into the tool and not simply an extension or plugin."
"There were stability issues: 1) SQL operations, such as partitioning, had bugs and showed wrong results. 2) Due to server downtime, scheduled processes used to fail. 3) Access to project folders was compromised (privacy issue) with wrong people getting access to confidential project folders."
"Dataiku still needs some coding, and that could be a difference where business data scientists would go for DataRobot more than Dataiku."
"One of the main challenges was collaboration. Developers typically use GitHub to push and manage code, but integrating GitHub with Dataiku was complicated."
"I think it would help if Data Science Studio added some more features and improved the data model."
"The interface for the web app can be a bit difficult. It needs to have better capabilities, at least for developers who like to code. This is due to the fact that everything is enabled in a single window with different tabs. For them to actually develop and do the concurrent testing that needs to be done, it takes a bit of time. That is one improvement that I would like to see - from a web app developer perspective."
"The ability to have charts right from the explorer would be an improvement."
"Although known for Big Data, the processing time to process 1.8 billion records was terribly slow (five days)."
"There should be support for REST API data sources to access data from the web."
"Starburst Enterprise could improve by offering additional features similar to those provided by other SQL query tools. For example, incorporating functionalities like pivot tables would make it more feasible to use."
 

Pricing and Cost Advice

"Our licence is on a yearly renewal basis. While pricing is not the primary concern in our evaluation, as products are assessed by whether they can meet our user needs and expertise, the cost can be a limiting factor in the number of licences we procure."
"The pricing of the modeler is high and can reduce the utility of the product for those who can not afford to adopt it."
"We think that IBM SPSS is expensive for this function."
"I rate the tool's pricing a five out of ten."
"It's quite expensive, but they do a special deal for universities."
"The price of this solution is a little bit high, which was a problem for my company."
"More affordable training for new staff members."
"If it requires lot of data processing, maybe switching to IBM SPSS Clementine would be better for the buyer."
"The annual licensing fees are approximately €20 ($22 USD) per key for the basic version and €40 ($44 USD) per key for the version with everything."
"Pricing is pretty steep. Dataiku is also not that cheap."
"I haven't personally dealt with the pricing aspects first-hand, but from what I understand, it largely depends on the specifics of your setup, especially the machines you use on AWS. The cost of using Starburst Enterprise can vary based on the amount of data you're processing and the type of machines you opt for, whether on AWS or another cloud platform."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
823,875 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
17%
Computer Software Company
9%
University
8%
Manufacturing Company
8%
Financial Services Firm
18%
Educational Organization
16%
Manufacturing Company
9%
Computer Software Company
8%
Financial Services Firm
44%
Computer Software Company
10%
Government
5%
Energy/Utilities Company
5%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about IBM SPSS Statistics?
The software offers consistency across multiple research projects helping us with predictive analytics capabilities.
What is your experience regarding pricing and costs for IBM SPSS Statistics?
The cost of IBM SPSS Statistics is managed by organizations, not individual researchers. It is a very expensive produ...
What needs improvement with IBM SPSS Statistics?
IBM SPSS Statistics does not keep you close to your data like KNIME. In KNIME, at every stage, you can see the result...
What needs improvement with Dataiku Data Science Studio?
One of the main challenges was collaboration. Developers typically use GitHub to push and manage code, but integratin...
What is your primary use case for Dataiku Data Science Studio?
We use the solution for data science and machine learning.
What is your experience regarding pricing and costs for Starburst Enterprise?
I haven't personally dealt with the pricing aspects first-hand, but from what I understand, it largely depends on the...
What needs improvement with Starburst Enterprise?
There are no specific projects supported by Starburst regarding AI initiatives or machine learning projects. In the f...
What is your primary use case for Starburst Enterprise?
We use Starburst with one client who is exploring their ecosystem to remove data silos and enable data access across ...
 

Also Known As

SPSS Statistics
Dataiku DSS
No data available
 

Learn More

Video not available
 

Overview

 

Sample Customers

LDB Group, RightShip, Tennessee Highway Patrol, Capgemini Consulting, TEAC Corporation, Ironside, nViso SA, Razorsight, Si.mobil, University Hospitals of Leicester, CROOZ Inc., GFS Fundraising Solutions, Nedbank Ltd., IDS-TILDA
BGL BNP Paribas, Dentsu Aegis, Link Mobility Group, AramisAuto
Information Not Available
Find out what your peers are saying about Dataiku vs. Starburst Enterprise and other solutions. Updated: December 2024.
823,875 professionals have used our research since 2012.