Try our new research platform with insights from 80,000+ expert users

Dataiku vs TIBCO Data Science comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Dataiku
Ranking in Data Science Platforms
7th
Average Rating
8.0
Reviews Sentiment
7.2
Number of Reviews
9
Ranking in other categories
No ranking in other categories
TIBCO Data Science
Ranking in Data Science Platforms
24th
Average Rating
7.6
Reviews Sentiment
6.3
Number of Reviews
4
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of January 2025, in the Data Science Platforms category, the mindshare of Dataiku is 12.1%, up from 7.8% compared to the previous year. The mindshare of TIBCO Data Science is 0.6%, up from 0.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Sabrine Bendimerad - PeerSpot reviewer
Saves a lot of time because I can quickly handle all the data preparation tasks and concentrate on building my machine learning algorithms
One of the main challenges was collaboration. Developers typically use GitHub to push and manage code, but integrating GitHub with Dataiku was complicated. While it was theoretically possible to use GitHub with Dataiku, in practice, it was difficult to manage our code effectively and push it from Dataiku to GitHub. Another limitation was its ability to handle different types of data. While Dataiku is powerful for working with structured data, like regular or geospatial data, it struggled with more complex data types such as text and image. In addition to the challenges with GitHub integration, the limited support for diverse data types was another feature lacking at that time.
VS
A straightforward initial setup and good reporting but needs better documentation
It would be ideal if it could be put onto the NMP where you can make more of an analysis. Right now, people don't have enough time to go through the report and make an analysis. It should provide the information of what is on the report into some kind of a dialogue form. Then, a person can ask certain questions and it could interactively give the required report. In terms of performance, I can see there are some issues when you are working with big data. When we are taking it from the Data Lake, we have a lot of issues. If you are doing certain operations of RDBMS, you suffer in terms of the latency of the data. That can be improved upon. Users should be able to cross tables of the web pages they are developing on Spotfire and this needs to be really easy and convenient. Right now, you need to do a lot of tweaks. The solution should be more user-friendly and require fewer tweaks, extensions, and workarounds.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Data Science Studio's data science model is very useful."
"I like the interface, which is probably my favorite part of the solution. It is really user-friendly for an IT person."
"The advantage is that you can focus on machine learning while having access to what they call 'recipes.' These recipes allow me to preprocess and prepare data without writing any code."
"If many teams are collaborating and sharing Jupyter notebooks, it's very useful."
"Cloud-based process run helps in not keeping the systems on while processes are running."
"The most valuable feature is the set of visual data preparation tools."
"The most valuable feature of this solution is that it is one tool that can do everything, and you have the ability to very easily push your design to prediction."
"I rate the overall product as eight out of ten."
"We like the way we can drill down into each report to get back data on each project. From the portfolio level, I can see what is happening on it. That is a really important feature. I can look at indirect costs, for example, which are hitting each CIO portfolio. It's good to be able to see actual resources in terms of time as well as cost."
"The most valuable feature is the ease of setting up visualizations."
"The most valuable feature is the performance."
"The idea that you don't have to generate reports each day but they are sent automatically is great."
 

Cons

"There were stability issues: 1) SQL operations, such as partitioning, had bugs and showed wrong results. 2) Due to server downtime, scheduled processes used to fail. 3) Access to project folders was compromised (privacy issue) with wrong people getting access to confidential project folders."
"In the next release of this solution, I would like to see deep learning better integrated into the tool and not simply an extension or plugin."
"The interface for the web app can be a bit difficult. It needs to have better capabilities, at least for developers who like to code. This is due to the fact that everything is enabled in a single window with different tabs. For them to actually develop and do the concurrent testing that needs to be done, it takes a bit of time. That is one improvement that I would like to see - from a web app developer perspective."
"Dataiku still needs some coding, and that could be a difference where business data scientists would go for DataRobot more than Dataiku."
"I think it would help if Data Science Studio added some more features and improved the data model."
"Server up-time needs to be improved. Also, query engines like Spark and Hive need to be more stable."
"One of the main challenges was collaboration. Developers typically use GitHub to push and manage code, but integrating GitHub with Dataiku was complicated."
"The license is very expensive."
"I would like the visualization for the map of countries to be more easily configurable."
"The scripting for customization could be improved."
"In terms of performance, I can see there are some issues when you are working with big data. When we are taking it from the Data Lake, we have a lot of issues."
"Additional templates would help to get things moving more quickly in terms of getting the reports out."
 

Pricing and Cost Advice

"Pricing is pretty steep. Dataiku is also not that cheap."
"The annual licensing fees are approximately €20 ($22 USD) per key for the basic version and €40 ($44 USD) per key for the version with everything."
Information not available
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
831,158 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Educational Organization
16%
Manufacturing Company
9%
Computer Software Company
8%
No data available
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What needs improvement with Dataiku Data Science Studio?
One of the main challenges was collaboration. Developers typically use GitHub to push and manage code, but integrating GitHub with Dataiku was complicated. While it was theoretically possible to us...
What is your primary use case for Dataiku Data Science Studio?
We use the solution for data science and machine learning.
Ask a question
Earn 20 points
 

Comparisons

 

Also Known As

Dataiku DSS
Alpine Data Chorus
 

Learn More

 

Overview

 

Sample Customers

BGL BNP Paribas, Dentsu Aegis, Link Mobility Group, AramisAuto
Havas Media, Tipping Point Community, eviCore
Find out what your peers are saying about Dataiku vs. TIBCO Data Science and other solutions. Updated: January 2025.
831,158 professionals have used our research since 2012.